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Introduction. Let X be a partially ordered set and a be its
element. Ub(a) and Lb(a) denote the sets {x ix X, xa} and [x lx X,
x< a} respectively.

DEFINITION 1. i) A partially ordered set X is called a ramified
set if Lb(a) is a well-ordered subset of X for any a X. ii) A non-
void ramified set X is called perfectly irresoluble if Ub(a) is not
totally ordered for any a X. X is called irresoluble if it includes
a non-void perfectly irresoluble subset. X is called resoluble if any
its non-void subset is not perfectly irresoluble.*

In connection with Souslin’s Problem (see [2), investigations of
ramified sets have been proceeded by many authors including Prof.
George Kurepa (see [3). In this paper we are interested in the
internal structure of ramified sets and comparison between them, and
obtained several results mentioned later, which seem fundamental in
the theory of structures of them. But here we only give the outline
of their proofs and details will be published elsewhere.

First the following follows from Definition 1.
THEOREM 1. A ramified set X includes the largest (in the sense

of inclusion) perfectly irresoluble subset K(X). X is resoluble if and
only if K(X) is void.

1. Main Theorems. Hereafter X, Y and Z denote ramified sets.
DEFINITION 2. i) We write X=Y if there exists a mapping f

(many-to-one in general) of X into Y such that a<x implies f(a)
<f(x), X.Y if XY and Y-X, and XY if XY and YX
where Y,.X is the negation of YX. ii) Let fl be a regular
ordinal number greater than O. denotes the family of all rami-

fied sets X with X< , and (R) denotes the family of all resoluble
sets in

is a quasi-ordering and is an equivalence relation between
ramified sets. If we identify equivalent sets, becomes an order
relation. We shall say that X and Y are comparable with each other,
if either XY or YX holds. Our Main Theorems are the following.

MAIN THEOREM A. i) (R) is well-ordered by under identifica-
*) of course a void set is regarded as a well-ordered set (and hence a totally

ordered set). For convenience, a void set is regarded as a ramified set which is
resoluble and (perfectly) irresoluble in the same time.
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tion of equivalent sets. ii) If one of X and Y is resoluble, then they
are mutually comparable.

MAIN THEOREM B. Continuum Hypothesis implies that i), there
exists a pair of ramified sets X and Y such that neither X><Y nor
Y><X holds, and ii), there exists a sequence [Xln<o} such that
X/,X for any n

MAIN THEOREM C. [}1 is well-ordered by < under identification
of equivalent sets.

Now we shall mention the outline of proofs of these Theorems.
2. Preliminaries on ordinal numbers. In this paper every small

Greek letter stands for an ordinal number, and the letter n denotes
a finite number, fl is a regular number greater than 0 as we stated
in Definition 2. Concerning terminologies and notations mentioned
without definitions, refer to 1. Every number is decomposed into
a sum /+n of a limit number / and a finite number n, where
will be denoted by ls() and n will be denoted by fr(). Let , be a
number with 0<,<(o. If , is an isolated number, then denotes
the class of all numbers with fr()0 and denotes the class of
all numbers with fr()-0. If , is a limit number, then denotes
the class of all numbers such that there exists a rest 5 of with
0<<, and denotes the class of all numbers such that any non-
zero rest of is not less than ,. Put p--1 if fr(/)--0 and p-O if
fr()>0. Functions () of , assigned to each , with 0<,<w, are
defined as follows:

DEFINITION 3. 1()-- and (0)--0 for any ,. Assume that
and are given and (/) is defined for any and Z with
and () is defined for any

If ,=]+1 and =/+1, then put ()=(w+).
If, is a limit number and =,+5 where 0<4<, (i.e.

then put

If 0<2 and l eO, then put a(1)=sup a().
Finally put fl=sup a(1).

Concerning the functions a() we have
THEOREM 2. i) If O<<,<w, then for any p>O, except where

fr(,)=0 and [=,+ with 0<<, there exists a such that
=a,((o). ii) / <<fl implies a([) < a(1) for any ,. iii) In order
that -a(o) for any <,, it is necessary and sufficient that
with g e. iv) <_a(1)for any and, with 0<,<o. v) If
<fl, then there exists a ,<o such that <a(w). vi) If ,>1,
then a(1) is a limit number for any <fl, and cf(a(1))=fl for any

s q and cf(a(1))=cf(1) for any z
Let I be a limit number less than fl. According to Theorem 2
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iv), there exists the least number ,, which we denote by gn() (genus
of ), such that <(w), and according to Theorem 2 iii), there
exists a / q, which we denote by de() (derivation of ) such that
--(/). According to Theorem 2 ii), de() is uniquely determined by. For an isolated number , put gn()--gn (ls()) and de()--de (ls()).
Let y()denote the least number
such that y(2)-- is called a y-number (see 1).

DEFINITION 4. F denotes the set of all < with cf(ls())<.
F denotes the set of all < such that cf (ls())-- and de()is not
a y-number. F denotes the set of all < such that cf(ls()):
and de() is a y-number.

By Definition 4 and Theorem 2 v), we can easily see
LEMMA 1. ,_F uniquely determines , , and n such that

,=gn(2), $=y(de(2)), n=fr(2) and (1) 2=a($A-)- n. ,I"2 uniquely
determines , and n such that ,=gn(2), n=fr(2) and (2) 2=a(o)
-4-n, where / is either an isolated number or a limit number with

DEFINITION 5. The righ sides of (1) and (2) in Lemma 1 ave
called the canonical decompositions of in F and F respectively.

3. Outline of the proof of Theorem A. W denotes the set of
all ordinal numbers g<:2 with the natural order between them. Let
[X ! A} be a family of ramified sets.

DEFINITION 6. i) V X denotes the cardinal sum of sets X
with 2A, and W+X denotes the ordinal sum of W and X (see
[2). ii) Seg(X) denotes the set of all x sX such that the type,
which is an ordinal number, of Lb(x) is less than o. X(R) Y denotes
the set of all xsX and all pairs (x,y) with xsSeg(X) and ysY
where the order within X preserves original relation, x<(x’, y) if
and only if x <x’ within X and (x, y)
and y< y’ within Y.

According to Axiom of Choice, we assume that for any limit
number 2 a sequence A of ordinal numbers less than and cofinal to

2 is determined so that /=i. For an isolated number 2, put
A=A. Besides put a=o if FF and a=0 if F. In
order to prove the Main Theorem A, we shall define a sequence

[NI<} of N z (R) according to
PRINCIPLE l. Put N W, for n< w, and assume o< < fl and

that for any /<, N, is already defined.
Case 2 F. Put N= WA- V N where n=fr(2).

A
Case

and put N
Case
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If / is a limit number with cf(g)--fl, then put N--W+N./, and

if f -- 1, then put N W
Then we can prove
THEOREM 3. i) For any XeO, there eists a 2<fl such that

X>N. ii) Each N in satisfies the following conditions: D.1)
/< 2 implies N,N, D.2) If X e (R) and N,X for any /< then
N:X, and D.3) If Xs9i, then N is comparable with X.

From this we have the
COROLLARY. i) For any Xz(R) there exists a 2<fl such that

XN. ii) Under identification of equivalent sets, (R) is well-ordered
by : in the type fl (Main Theorem A i)).

Since, for any ramified sets X and Y, there exists a sufficiently

large regular number
Main Theorem A ii) follows from the above Corollary i) and D.3) on

N. Thus the proof of Main Theorem A is completed.
4. Sets S. DEFINITION 7. Let P(X) denote the set of all

sequences p--[p(1),p(2),..., p(n)} of length n, which we denote by

len(p), such that p(k) Seg(X) for k< n and p(n) X. X(R) denotes
the set [J P(X), in which for p and p’, we have p<p’ if and only

if, putting n-len(p) and n’-len(p’), one of the following conditions
is satisfied: (a) n<n’, p(k)-p’(k) for any k<n and p(n)_p’(n), (b)
n-n’, p(k)-p’(k) for any k<n and p(n)p’(n).

DEFTON 8. Put ’--( and a--a:,, i.e. a--0 if and only if
is a limit number with cf()<fl and a-(o otherwise. Let be a

number with

with 0< <.
Then for any with 0_<<, we have
THEOREM 4. i) N,S for any /<a(w+), ii) If Xs and

N,X for any/<a(o+), then S[X. iii) If Xeg, then S is com-
parable with X. iv) S _- (+) except where --0 and r is either

an isolated number or a limit number with cf(r)--0. S[N(+)
in these excepted cases.

Thus S is the least upper bound of sets N, with
within i}t. We shall find examples to confirm Main Theorem B from
the family

5. Outline of the proof of the Main Theorem B
DEFINITION 9. Put L= V N +,(- V W+.-N+) and S=L(R).

Let 0i be the family of all maximal totally ordered subsets A of S such

that AP(L) is not void for any n<o (then A-(o), and B be the set
of elements t assigned to each A s. Put T--SB where each t sB
is maximal in T and x<t for x eS if and only if x eA. For a
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subset C of B, SC is regarded as a ramified subset of T.
LEMMA 2. LST.
A subset C of B will be called barren if SCS. Applying

Proposition Ps of [4 we can see
THEOREM 5. Under the assumption of Continuum Hypothesis, for

any subset C of B, if it is not barren, there exists a subset D of C
such that S S D S C.

By Lemma 2, B itself is not barren, and starting from Do--B,
we can inductively define D such that each Dn is not barren and
SD/SD for any n<o. Hence putting X--SD, the sequence
Xn, n< o, satisfies the condition of Main Theorem B ii), and we obtain
the proof of it.

Let D be a subset of B such that SSDT, and E be the
set of elements s assigned to each t s D. Put U-SDE where
each ssE is maximal in U and x<s for x sSD if and only if
within SD. Then we can see that neither TU nor UT holds,
and we obtain the proof of Main Theorem B i).

5. Outline of the proof of the Main Theorem C. Hereafter
we assume fl- 1.

DEFINITION 10. Let o and t be the sets of numbers less than
1 such that: If F, then s o. Assume that 1 and it is decided
whether lSAo or l1 for any 2. For 2s F, letting
be the canonical decomposition of , o or according to

o or a() respectively. For 2 F, letting a(o7)+n be the ca-
nonical decomposition of 2, 2 o if l- 1, 2 if [-- + 1 where 0
and, if is a limit number, then o or according to Ao
or respectively.

Then any number less than 1 is shared into /0 or /. In order
to prove Main Theorem C, we shall construct a sequence -[M!< Ia}
of M z} according to

PRINCIPLE 2. If o, then M--N. If s and --[+ 1, then
M--N,. If IF, fr(2)--0 and, letting a((o;) be the canonical
decomposition of 2, l- + 1 where O, then M-S.

Now assume 2s, fr(2)-0 and that M is defined for any

If 2F1, then letting a($+) be the canonical decomposition of
M--M((R)N+. If 2sF and, letting a(o) be the canonical
decomposition of 2, is a limit number, then M--W.-+-M,.

Thus we can inductively define M for any 2<1, and we have
THEOREM 6. i) For any Xs9, there exists a <1 such that

XM. ii) Each M satisfies D.1) g<2 implies M,M and D.2’)
If Xsg and M,X for any <2, then MX.

From this, Main Theorem C follows similarly as Main Theorem
A i) follows from Theorem 3.
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