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Introduction. In their paper 1, R. Bellman and K. L. Cooke
have defined a kernel function K(t, s) which has been used to obtain
several theorems concerning the stability and boundedness of solutions
of difference-differential equations with perturbed terms.

In the present paper, we shall establish some theorems on the
boundedness of solutions of difference-differential equations which are,
in general, not linear.

1o For the sake of simplicity, we consider an equation
(1.1) x’(t)--A(t)x(t)+B(t)x(t--1)+w(t) (O_t<)
under the conditions
(1.2) x(t--1)=(t) (0t<l) and x(O)-xo.

It is supposed that A(t), B(t), and w(t) are continuous for 0t< ,
(f(t) is continuous for 0t<l, and lim,_0(f(t)=(1--0) exists. Then,
it is well known that there exists a unique solution of (1.1) under the
initial conditions (1.2) for 0t< .

Now, we define a transformation

(1.3) y(t)- !x(t)-(t+l) (-lt0),
 x(t)-Xo (0 t<

Then, by (1.3), (1.1) is reduced to the equation with respect to y,
that is,
(1.4) y’(t)--A(t)y(t)+B(t)y(t--1)+w(t)
under the condition y(t--1)--0 (0tl), where w(t) is as follows:

IxoA(t)+B(t)(f(t)+w(t) (0t< 1),w(t)--
(xoA(t)+xoB(t)--w(t) (lt< ).

By using the same kernel function K(t, s) as defined in _1, the
unique solution y-y(t) of (1.4) under the condition y(t --1) 0 on
0tl is represented by the integral

(1.g) (t)- K(t, )w()d (O<___t oo).

hus, it follows from (1.8) that

(1.6) x(t)--Xo+ K(t, s)w(s)ds (Ot< ).

1) The method to obtain (1.5) is just the same as in [1].
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Especially, if w(t)O on 0t< and (t)-----0 on 0t< 1, the equation
(1.6) leads us to

x0(l+ K(t,f s)A(s)ds)
(1.7) x(t)--

xo(l+flK(t,s)A(s)ds+fK(t,s)(A(s)+B(s))ds (lt< ).

2. Now, we consider a perturbed equation
(2.1) x’(t)- A(t)x(t) + B(t)x(t-- 1) -t- f(t, x(t), x(t-- 1))
for 0t< under the conditions
(2.2) x(t--1)-(t) (0t<:l) and x(O)-xo.

The kernel function for the equation
(2.3) x’(t)- A(t)x(t) +B(t)x(t-- 1)
will be denoted by K(t,s). It is supposed that the existence and
uniqueness of the solution of (2.1) with (2.2) are guaranteed for
t< . Then the following theorem will be established.

THEOREM 1. In the equation (2.1) we suppose that the following
conditions are satisfied:

(i) the unique solution Xo(t) of (2.3) with (2.2) is bounded;)

(ii) f(t, x, y) is continuous and
(2.4)
for Ot<
and

h(t)dt< c

(iii) the kernel function K(t, s) is bounded, that is,
(2.6) K(t, s)ic (Ost< );

(iv) (t) is continuous for 0t<l, and lim_0 (t) exists.
Then, the solution of (2.1) with (2.2) is bounded for Ot<
PROOF. By means of the kernel function K(t, s), it follows from

(1.5) that the solution of (2.1) with (2.2) is represented by

x(t)-x,(t)+ K(t, )f(, x(), x(--l))d.

Now we have to consider two eases:
I. he ease 0___< t___< l. It follows from (2.2), (2.4), and (2.6) that

Ix(t) ! Xo(t) l+ K(t, s) f(s, x(s) (s)) Ids

c+c h(s)(lx(s)I+l(s)[ ds

(2.5)

2) A sufficient condition that the hypothesis (i) is satisfied is that A(t) and B(t)
are absolutely integrable for 0t<, which will be established in Theorem 3.

3) Here, the upper bound of lx(t) may depend on x0 and (t).
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___<c.+c h(s)

where c is the upper bound for lz0(t) and

c-c+c [h(s) (s) ds.

This inequality leads us to

(yh(s)ds) exp (cyh(s)ds)tx(t) lcexp c c

which implies that x(t)] is bounded.
II. The case lt< . It follows by (2.2), (2.4), and (2.6) that

Ix(t) l! xo(t) i+ K(t, s) if(s, x(s), (s)) ds

+ K(t, s)! f(s, x(s) x(s--1)) ]ds

c+cft(h(s)+h(s+l)) x(s)]ds.

This inequality leads us to

Ix(t) [c exp (c.f(h(s)+h(s+l))ds)c exp (2c
which implies the boundedness of [x(t)

3. We shall now establish another boundedness theorem without
using any kernel functions. The equation to be discussed here is as
follows:
(3.) x’(t)- f(t,
under the initial conditions

(3.2) x(t--1)-(t) (0t<l) and (0)-Xo,
where (t) is a function the same as before. It is supposed that
the existence of solutions for 0t< is guaranteed.

THEOREM 2. We suppose that in the equation (3.1)with (3.2),
f(t, x, y) satisfies the following conditions:

) f(t, x, y) is continuous for
(ii)

(S.3) If(t,
for 0t<, t1<,

(iii) h(t) is continuous for Ot< and

(3.4) fh(t)dt<
Then, any solution of (3.1) with (3.2) is bounded for
PROOF. Let x--x(t) be a solution of (3.1) with (3.2). Then, by

means of the initial condition x(0)=Xo, it follows from (3.1) that
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(8.5)

where

x(t)--Xo+ f(s, x(s), x(s--1))ds (Ot< 00).

The case 01. It follows from (3.2), (3.3), (3.5) that

x(t) Xol + if(s, z(s), (s)) ds

Xo l+ h(s)( x(s) + f(s) ds

ca+ h(s) x(s) ds,

c3"-l Xo !-t- h(s) (s) ds,

which leads us to the inequality

(3.6) tx(t)lc3exp ( ft h(s)ds)csexp ( fh(s)ds).
II. The case lt< oo. It follows from (3.2), (3.3), (3.5) that

Ix(t) 1i Xol/ If(s, x(s), (s)) ds+ if(s, x(s), x(s-1)) ds

lxol+ h(s)([x(s)]+](s)])ds+ fh(s)(lx(s)i+]x(s 1)t)ds

which leads us to he inequality

(3.7) [x(t)]cexp (f 1))ds) exp (2fh(s)ds)(h(s)+h(s+ c

which implies together with (3.6) the boundedness of [(t)].
It is to be noted that the inequalities (8.6)and (8.7)show us

not only the boundedness but also the stability of solutions, provided
that Ix0 and I(t) are suciently small.

4. As for difference-differential equations of neutral type, we
shall establish a boundedness theorem, for which the equation to be
discussed here is
(4.) ’() f(,(t), (t- ), ’(- ))
under the initial conditions
(4.2) (t--1)-()(0t<l) and x(0)=0,
where f(, , y, z) is continuous and bounded, f(t, , y, z) M, for
0t, li, yt , zI , ad () is given function as
before, continuously differentiable for 0<t<l, lim._o e’(), lim..0 e’()
exist.

It is supposed that the existence and uniqueness theorems are
guaranteed for 0$ .
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THEOREM 3. 1" the equation (4.1) with (4.2) we suppose that the
following conditions are satisfied:

(i) lf(t,x,y,z)ih(t)(lxi+lyi+lzi) for ot<,

(ii) h(t)dt

The, the iqe ogio of (4.1) with (4.)

PROOF.
that

where

I. The case 0tl. If follows from (4.2) and (i), (ii)

Ix(t) i! Xo i+ if(s, x(s), (s), F’(s)) ds

! Xo ]+

c+ h(s)x(s)]ds,

c lXol+ h(s)(l(s)l+i(’(s)l)ds.

II. The case lt< . It follows from (4.2) and (i), (ii) that

lx(t)llXo[+ f(,x(s), (s), ’(s))ids+ f(s,x(s),x(s--1),x’(s--1))ds

ixol+

+f h(.)(! =(.) + =(.- 1) + =’(s- 1)!) ds.

Since i=’(t)lM, e hae

(t)e+ (h()+h(+ 1))u()g,

where (t)-l(t)l+l’(t)! and e-e+M. hen it follows that

where e-ax (e, e), whieh implies he boundedness of (t).
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