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Introduction. In their paper [17, R. Bellman and K. L. Cooke
have defined a kernel function K(¢,s) which has been used to obtain
several theorems concerning the stability and boundedness of solutions
of difference-differential equations with perturbed terms.

In the present paper, we shall establish some theorems on the
boundedness of solutions of difference-differential equations which are,
in general, not linear.

1. For the sake of simplicity, we consider an equation

1.1 &' () =A@)x(t)+B@)e(t—1)+w®) (0=t< )
under the conditions
1.2) 2(t—1)=¢(t) (0=t<1) and 2x(0)=x,.

It is supposed that A(t), B(t), and w(t) are continuous for 0=t < oo,
¢(t) is continuous for 0=<t<1, and lim,,,_,0()=¢(1—0) exists. Then,
it is well known that there exists a unique solution of (1.1) under the
initial conditions (1.2) for 0=<t< oo.

Now, we define a transformation

_ e —e(t+1) (—1=t<0),
(13) )= {x(t)~—wo (0=t < co).
Then, by (1.3), (1.1) is reduced to the equation with respect to v,
that is,
(14) ¥'() =AWy )+ By E—1)+w,(®)
under the condition y(t—1)=0 (0=t=<1), where w,(t) is as follows:
)= [FAO+BORO)ut) 0t<1),
T AR+, Blt)+w(t) (I=t<oo).

By using the same kernel function K(t,s) as defined in [1], the
unique solution y=y(t) of (1.4) under the condition y(t—1)=0 on
0=<t=<1 is represented by the integral

(15) y(t)= f ‘K¢, s)wi(s)ds  (0=t< o).
Thus, it follows from (01.3) that
(1.6) (t) =+ f CK(t, sywi(s)ds (0=t < oo).

1) The method to obtain (1.5) is just the same as in [1].
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Especially, if w(t)=0 on 0=<t< o and ¢(t)=0 on 0=t<1, the equation
(1.6) leads us to

ac0<1—|— f ‘K¢, s)A(s)ds>
(L7 a(t)= d t
x0<1+ f "K(t, 5)A(s)ds+ f K, s)(A(s)+B(s)>ds (1=t< o).

2. Now, we consider a perturbed equation
(2.1) o' ()= AB)x )+ BO)a(t—1)+ 1 (¢, 2(t), #(t—1))
for 0=<t< o under the conditions
(2.2) zt—1)=¢() (0=t<l) and x(0)=ux,.
The kernel function for the equation
(2.3) 2’ (t)=At)x(t)+ B(t)x(t—1)
will be denoted by K(t,s). It is supposed that the existence and
uniqueness of the solution of (2.1) with (2.2) are guaranteed for 0=
t< oo, Then the following theorem will be established.
THEOREM 1. In the equation (2.1) we suppose that the following
conditions are satisfied:
(i) the unique solution x,(t) of (2.3) with (2.2) is bounded;?
(ii) f@&, x,y) is continuous and
(24) | £t 2, 9) | =) |2]+]])
Jor 0=t< oo, |x|< 0, |y|< oo, where h(t) is continuous for 0=<t< oo
and

(2.5) “h(t)dt < oo;
/
(iii) the kernel function K(t,s) is bounded, that is,
(2.6) [ K 8)|=c (0=s=t<oo);

(iv) o(t) is continuous for 0=t<1, and lim,,, , ¢(t) ewists.

Then, the solution of (2.1) with (2.2) is bounded for 0<t< oo.®

ProOOF. By means of the kernel function K(t,s), it follows from
(1.5) that the solution of (2.1) with (2.2) is represented by

w(t) =2,(t)+ f 'K(t, 9)f (s, a(s), a(s—1))ds.

Now we have to consider two cases:
I. The case 0=t=1. It follows from (2.2), (2.4), and (2.6) that

|2) =] 2®) |+ [ 1K, )11 £(5,2(5), o(6)] ds

et [ 1|2 [+lo)]) ds

2) A sufficient condition that the hypothesis (i) is satisfied is that A(f) and B(t)
are absolutely integrable for 0=t<oo, which will be established in Theorem 3.
3) Here, the upper bound of |x(t)| may depend on x, and ¢(t).
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¢
<ete f h(s) | #(s) | ds,
0
where ¢, is the upper bound for |z,(t)| and
1
c;=c,+c¢ f h(s) | o(s) | ds.
0
This inequality leads us to
¢ o
| 2(t) |<c, exp <c f h(s)ds) <c¢,exp <c f h(s)ds),
0 0

which implies that |«(¢)| is bounded.
II. The case 1<t< oo, It follows by (2.2), (24), and (2.6) that

s = lu®)1+ [ 1Kt 9)] | £, a(6), 9(s)) | ds
+ [ 1K, 511 7G5, 2(3), a(s—1)) | ds

<opte f “(W(s) +h(s+1)) | a(s) | ds.

This inequality leads us to

| 2(t) |<c; exp (c f B(h(s)+h(s+1)) ds) =<c; exp <2c f wh(s)ds),
0 0
which implies the boundedness of |x(%)]|.
3. We shall now establish another boundedness theorem without
using any kernel functions. The equation to be discussed here is as
follows:

(3.1) &' ()= f(t, x(t), xt—1)) (0=t< o)
under the initial conditions
(3.2) z(t—1)=0() 0=t<l) and 2(0)=ux,,

where ¢(t) is a function the same as before. It is supposed that
the existence of solutions for 0=t< o is guaranteed.
THEOREM 2. We suppose that in the equation (3.1) with (3.2),
S, x,y) satisfies the following conditions:
(1) S, =, y) is continuous for 0=t<co, |x|< oo, [y|< ;
(ii)
(8.3) [ f& oz, 9) [=h@(z]+]y])
Sor 0=t< oo, |z|< o0, [y][< oo;
(iii) A(t) s continuous for 0<t< oo and
34 h(t)dt < oo,
(34) f (tydt <
Then, any solution of (3.1) with (3.2) is bounded for 0<t< oo,

PrOOF. Let x=ux(t) be a solution of (3.1) with (3.2). Then, by
means of the initial condition x(0)=w,, it follows from (3.1) that
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(3.5) (E) = o+ f ‘F(s, w(s), a(s—1))ds (0=<t< o).

I. The case 0<t=<1. It follows from (3.2), (3.3), (8.5) that
3
|2(t) =] @l + [ ] £(s,2(6), ¢(&) | ds
0

=laol+ [ (o) |+l9)])ds

Ze+ [ 1e) | 2(6) | ds,
where 0
co= 0]+ [ h(s) [ (s) | ds,
which leads us to the inequalitsor
(36) |a(t)|<esexp ( [ he)ds)=<esexp ([ his)ds).

II. The case 1<t<oo. It follows from (3.2), (3.3), (3.5) that
o) =] 20|+ [ [ £6,56), o) ds+ [] 7G5, 2(6), als—1))|ds

=Jaol+ [ he(1 @)1+ D ds+ [ hE)([a6) |+ [as—1)])ds

Zet [ (&) +hGs+1) [ 2(s) | ds,
which leads u; to the inequality
8.7 |=z@)|=c;exp ( f t(k(s)+h(s—|—1))ds> = c;exp <2 f ” h(s)ds>,

which implies together with (3.6) the boundedness of |(t)|.

It is to be noted that the inequalities (8.6) and (8.7) show us
not only the boundedness but also the stability of solutions, provided
that |[#,| and |¢(t)| are sufficiently small.

4. As for difference-differential equations of neutral type, we

shall establish a boundedness theorem, for which the equation to be
discussed here is

4.1) &'(t)=f (), ©(t—1), «'(t—1))
under the initial conditions
4.2) 2t—1)=¢()(0=t<1) and 2z(0)=xw,,

where f(t,x,y,2) is continuous and bounded, |f(¢,z,y,2)|<M, for
0=<t< oo, |x|<oo, |y|<oo, [2]<oo, and ¢(t) is a given function as
before, continuously differentiable for 0<t<1, lim,,,_, ¢'(t), lim,,,, ¢'(£)
exist.

It is supposed that the existence and uniqueness theorems are
guaranteed for 0=<t< o,
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THEOREM 3. In the equation (4.1) with (4.2) we suppose that the
SJollowing conditions are satisfied:

(i) [fCay2)|=h@)(x|+]y|+]z]) for 0=t<oo, [z]|<oo,
ly|<oo, |2]< 005
(ii) f " h(t)dt < oo.

Then, the unique solution of (4.1) with (4.2) is bounded for 0=
t<< oo

Proor. 1. The case 0=<t=<1. If follows from (4.2) and (i), (ii)
that

2@ =] m [+ [ £, 26, ¢, ¢'@)]ds
=layl+ [ 1ot 1 +106)|+]¢/©))ds

et [ 1)) ds,
where 0
ce=lool+ [ hE(1os)|+1¢' @) ds.
II. The case 1=t< ooo. It follows from (4.2) and (i), (ii) that
le®)|=lml+ [ 176, 2(6), o(s), ¢/ @) | ds+ [[1£(s,2(6),0(5—1),a/(s— 1)) |ds

=lal+ [ ) o6) | +106)|+¢'6) ) ds

+ [ Be1a(0) | +]a(s— D +#/ (s~ 1) ds.
Since |oc’(t)|§1M, we have
w®=eot [ () +hs+D)u(s)ds,
where u(t)=|x(t)|+]2'(¢)] a;d c;=¢,+M. Then it follows that
|o(t) | <eo exp <2 Of h(s)ds) (0=t < ),
where ¢;=Max (¢, ¢;), which implies the boundedness of |z(¢)].
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