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We shall be concerned with continuous curves in a Euclidean
space R of any dimension m. We interpret R as a vector space
consisting of all the m-tuples (x,..., x) of real numbers, and by a
continuous curve in R we understand a continuous mapping of the
real line R into R (we may identify R with R). In what follows, a
curve, by itself, will always mean a continuous curve in R which is
locally rectifiable, i.e. rectifiable on every closed interval. This will
be tacitly understood throughout. It may be observed that, under
this agreement, the sum of any pair of curves is likewise a curve,

We shall call length-function for a curve (t) any real-valued
function F() defined on R and such that, for every closed interval
I--a, b, the length of the curve over I is equal to F(I), where
F(I) means as usual the increment F(b)--F(a) of F over L Thus
F(t) is continuous and monotone nondecreasing. Of course, F is not
uniquely determined by .

Given a pair of curves and , let F, G, H be any length-functions
for , , and -k respectively. Then it is easy to see that, for every
closed interval I, we have the relation
1 ) H(I)

_
r(I) + G(I).

This is the inequality of Steiner. Now it is the object of this paper to
obtain a necessary and sufficient condition for the equality sign to
hold in (1) for a given interval I. Although a number of partial or
intermediate results in this direction are given in Rad6 _1, it seems
to us that no complete solution of the problem has appeared as yet.

We find it convenient to give a few more definitions. By the
direction of any nonvanishing vector q of R we understand the unit-
vector ql-q. The latter will sometimes be denoted by the symbol
dir q. Given a curve 9 and a point c of the real line, a unit-vector
p of the vector space R will be called tangent direction of at the
point c, iff (i.e. if and only if) for any positive number e we can find
another positive number such that, whenever I is a closed interval
containing c and having length less than ,, we have both 9(I) 0 and
[dir (I)--p [<. The tangent direction of at c is obviously uniquely
determined when existent, and will be denoted by the symbol (c).

As a notion closely related to that of tangent direction we define
further the velocity of a curve at a point c eR as follows, Writing
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(t)=(x(t),...,x(t)}, we term derivable at c iff the coordinate-
functions x(t) are all derivable at c. When this is the case, we call
velocity of at c and denote by ’(c), the vector (x(c),..., x(c)}. We
find at once that if ’(c)0, then the direction of ’(c) is the tangent
direction of at c.

We say further that a pair of curves and are comparable
at a point ceR, iff there is a positive number K such that we have
both ](I) tKI(I)t and [(I) IKt(I)t for all sufficiently short
closed intervals I containing the point c. This is always the case
whenever the two curves have nonvanishing velocities at c.

If, finally, U(t) is any real-valued function defined and monotone
nondecreasing on R, we understand by the symbol U* the outer
Carathodory measure for R, associated with the additive interval-
function U(I) in the same manner as expounded on p. 64 of Saks [2.

We are now in a position to enunciate our result in the follow-
ing form:

Theorem. Given a pair of curves and , let F, G, H be any
length-functions for , , and + respectively. In order that the
equality

H(Io) F(Io) - a(Io)
should hold for a fixed closed interval IoR, it is necessary and
sucient that we should have
2 ) F*(M)--G*(M):O

for the set M of the points t of Io at each of which the curves and

are comparable and their respective tangent directions (t) and (t)
exist without coinciding.

Proof. Let us put U(t) =F(t) +G(t) +t for real numbers t. Then
U is a continuous, strictly increasing function which maps R onto R,
and hence so is its inverse function (u). We find further, for every
set X of real numbers,

U*(X)
_
F*(X) +G*(X);

this is easily seen by considering the meanings of the appearing
quantities. (We could even prove the equality

U*(X)=F*(X)+G*(X)+ X],
where IX! denotes the Lebesgue outer measure of X; but this is
irrelevant to our present purpose.) On the other hand, the theorem
given on p. 100 of Saks 2 implies that U*(X)= U[Xlfor any
XR, where U[X means the image of X under the mapping U.
We therefore have
( 3 ) F*(X)--G*(X)=O
whenever U[X is a set of measure zero.

With the help of the function (u)introduced above we define
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now a pair of curves and by setting, for all points u eR,
O(u)=($(u)) and (u)=($(u)).

These curves are absolutely continuous, that is, have absolutely
continuous coordinate-functions since, for every closed interval J, we
have

I(J) !=! ([J]) F([J]) U([J])= J!
and a similar result for .

Now the continuous functions P, Q, R defined on the real line by
P(u)--:F($(u)), Q(u)-- G($(u)), R(u)--H((u))

are evidently length-functions for , , and Cq- respectively. As
is easily seen further, possesses a tangent direction at a point ueR
iff the curve does at the corresponding point t=(u), and when this
is the case the two tangent directions coincide; and similarly for the
curve . It is also manifest that P and c are comparable at a point
u iff and are so too at the point t=$(u). We find besides, ap-
plying once more the theorem quoted above from Saks 2, that, for
any set Y of real numbers,
(4) P*(Y)=] P[Y] 1-1F([Y])[--F*([ Y_-]).

This being so, let us write I--U[Io], where I0 is the interval
appearing in the theorem, and let us consider the set K of the points
of the interval I at which the curves and , as well as the func-
tions P and Q, are all derivable. Then K is a Borel set on account
of a theorem on p. 113 of Saks [2], the coordinate-functions of ’(u)
and of ’(u) are B-measurable on K by the same theorem, and the
set I--K must be of measure zero in conformity with a well-known
theorem of Lebesgue (vide p. 115 of Saks [2]).

In view of absolute continuity of and it follows from Tonelli’s
theorem on p. 123 of Saks [2] that

whence we derive, writing for simplicity
S(u) !+! I-! +

for uK and noting the obvious relations P(I)=F(Io), Q(I)=G(Io),
and R(I)=H(Io), that

F(/0) q- G(/0) U(/0) f S(u)du.

Now S(u) is always nonnegative on account of the triangular ine-
quality, and thus our task comes to showing that S(u) vanishes almost
everywhere in K if and only if the condition (2) holds.

For this purpose, let us classify the general point u of K into
three disjoint sets A, B, C according as u fulfils respectively the
following three conditions on the velocities ’(u) and g’(u):
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(a) ’(u)--’(u)--0; (b) either ’(u) or Z’(u) vanishes, but
not both; (c) qi’(u)=0 and ’(u)O.

These are all Borel sets together with K, and S(u) vanishes every-
where in A and B. For brevity, we shall write Ko, Ao, Bo, Co for the
sets $K, A, B, C. Since ]I--KI--O, we then infer from
(3) that
( 5 F*(0-K0)- 0.

Now the decomposition theorem of de la Valle Poussin on p. 127
of Saks 2 gives, for any Borel set YK,

P*(Y)-f P’(u)du.

But Tonelli’s theorm (loc. cit.) informs us that P’(u)- ’(u)! almost
everywhere in K. Consequently we find in virtue of (4) that, for any
Borel set YK,

( 6 ) F*($[ Y)--;
Taking account of (a) we readily deduce hereby that
7 F*(Ao)--O.

On the other hand the condition (b) implies that the curves
and cannot be comparable anywhere in B, or what amounts to the
same thing by what has already been observed, that the set B0 con-
tains no points of comparability of the curves and . Consequently
the set M defined in the theorem is disjoint from B0. In view of (5)
and (7) it follows now at once that

F*(M) < F*(M--Ko) -F*(MAo) +F*(MBo)-F*(MCo)
F* (Io --.o) +F*(Ao)+F*(MBo)-F*(MCo) F*(MCo).

Combining this with F*(M)F*(MCo) we get F*(M)--F*(MCo), and
its counterpart G*(M) G*(MCo) must also be true by symmetry.
The condition (2) is thus equivalent to
( 8 F*(MCo)-G*(MCo)--O;
and so the proof will be complete if we show that (8) is equivalent
to IN]-0, where we denote by N the set of the points u of K at
which S(u)>0. Thus defined, N lies in C as observed in the above,
and is a Borel set since S(u) is a B-measurable function on K.

For any point u of C the relation S(u)-O means, in view of the
condition (c), that there is a positive real number 2 fulfilling ’(u)
--2’(u). In other words, a point u of C belongs to the set N when
and only when dir’(u)@dirY’(u). On the other hand (c) clearly
implies that at all points u of C the curves q) and Y are comparable
and have dir ’(u) and dir ’(u) for their respective tangent directions.
Accordingly the curves and + are comparable everywhere in Co
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and their tangent directions at any point t eCo are given respectively
by dir ’(u) and dir r’(u), where we write u= U(t). It follows at once
that MCo=[N. This together with (3) reveals that the relation
Ni=0 implies (8).

The proof draws now to a close, it only remaining to be shown
that (8) implies IN!=0. On account of (6) we deduce from (8) that

f du-O.

But since O’(u)=0 for all ueN in accordance with (c), this cannot
take place unless the set N is of measure zero.
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