138. Weakly Compact Operators on the Spaces of Continuous Functions

By Junzo WADA

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

In this note we shall give a brief account of some properties of weakly compact operators on the spaces of continuous functions on general spaces. Our main purpose is to extend some results of Arens [1] and Grothendieck [5]. Full details will appear in Osaka Mathematical Journal.

1. Let E and F be locally convex linear topological spaces. Then a continuous linear operator T of E into F is said to be a *compact* (resp. *weakly compact*) *operator* if T maps a neighborhood of 0 in Einto a compact (resp. weakly compact) subset in F. A completely regular Hausdorff space X is said to be a k_0 -space if whenever $U \frown K$ is a neighborhood of x_0 in K for a subset U ($\ni x_0$) and for any compact subset K ($\ni x_0$), U is a neighborhood of x_0 in X. A neighborhood here need not be an open set. A k_0 -space is a k-space,¹⁾ and any completely regular space satisfying the 1st axiom of countability or any locally compact Hausdorff space is always ak_0 -space. Let X be a topological space and \mathfrak{S} be a set of compact subsets. Then we denote by $C_{\mathfrak{S}}(X)$ the space of all continuous functions on X with the topology of uniform convergence of sets in \mathfrak{S} . " $\bigcup \mathfrak{S} = X$ " denotes that the sum of all subsets in \mathfrak{S} is X.

We first extend a theorem of Bartle $[2]^{2}$ to the case of locally convex topological linear spaces.

Theorem 1. (i) Let E be a barrelled locally convex linear space. Let Y be a completely regular Hausdorff space and let \mathfrak{S} be a set of compact sets in Y with $\bigcup \mathfrak{S} = Y$. Then a linear operator T of E into $C_{\mathfrak{S}}(Y)$ is continuous if and only if there is a continuous mapping τ of Y into E' with respect to the topology $\sigma(E', E)$ such that $(Te)y = \langle \tau y, e \rangle$ for any $e \in E$ and for any $y \in Y$.

(ii) Let E be a Banach space. Let Y be a completely regular Hausdorff space and \mathfrak{S} be a set of compact subsets in Y with $\bigcup \mathfrak{S} = Y$. Then a continuous linear operator T of E into $C_{\mathfrak{S}}(Y)$ is weakly compact if and only if there is a continuous mapping τ of Y into E' with respect to the topology $\sigma(E', E'')$ such that $(Te)y = \langle \tau y, e \rangle$ for $e \in E$ and $y \in Y$.

(iii) Let E be a locally convex topological linear space. Let Y be

¹⁾ Cf. for example, Kelly [6].

²⁾ Cf. [2, p. 55, Theorem 10.2].

a k_0 -space and let \mathfrak{S} be the set of all compact subsets in Y. Then a continuous linear operator T of E into $C_{\mathfrak{S}}(Y)$ is compact if and only if there is a continuous mapping τ of Y into $E_{\varepsilon}^{(3)}$ for a balanced convex w^* -closed equicontinuous set \mathcal{E} in E', and $(Te)y = \langle \tau y, e \rangle$ for $e \in E$ and $y \in Y$.

For the proof of (iii) we need to establish the following generalized Ascoli's theorem.

Lemma (Ascoli). Let X be a k_0 -space and let \mathfrak{S} be the set of all compact subsets in X. Then a set A in $C_{\mathfrak{S}}(X)$ is relative compact if and only if A is an equicontinuous set in $C_{\mathfrak{S}}(X)$ and $A(x) = \{f(x) \mid f \in A\}$ is bounded for any $x \in X$.

Let X be a stonian space.⁴⁾ Then if a sequence $\{\mu_i\} \subset C(X)'$ converges to 0 with respect to the topology $\sigma(C(X)', C(X))$, then $\{\mu_i\}$ converges to 0 with respect to the topology $\sigma(C(X)', C(X)')$.⁵⁾ Therefore, by Theorem 1, we have the following

Theorem 2. Let X be a stonian space. Let Y be a completely regular Hausdorff space satisfying the 1st axiom of countability and let \mathfrak{S} be a set of compact set in Y with $\bigcup \mathfrak{S} = Y$. Then any continuous linear operator of C(X) into $C_{\mathfrak{S}}(Y)$ is weakly compact.

Corollary 1 (Grothendieck). Let X be a stonian space and let E be a separable⁶⁾ complete Hausdorff locally convex linear space. Then any continuous linear operator of C(X) into E is weakly compact.

Corollary 2. Let X be an extremally disconnected space⁴ and let \mathfrak{S} be a non-empty set of compact sets in X. Let Y be a compact Hausdorff space satisfying the 1st axiom of countability. Then any continuous linear operator of $C_{\mathfrak{S}}(X)$ into C(Y) is weakly compact.

Remark. If a completely regular space satisfies the 1st axiom of countability, then $C_{\mathfrak{S}}(X)$ is, in general, not separable.

2. Let X be a metric space and let F be a closed subspace in X. Then there is for each f in $C_u(F)^{\tau}$ an element Tf in $C_u(X)$, with (Tf)(x) = f(x) for all x in F, such that T is non-negative, linear isometry of $C_u(F)$ into $C_u(X)$ (the simultaneous extension theorem). But Day [4] gave an example of a compact Hausdorff space X and of a closed subspace F such that there is no linear mapping of $C_u(F)$ into $C_u(X)$ which is a simultaneous extension of all elements of $C_u(F)$. His

3) Let ε be a w^* -closed balanced equicontinuous convex subset in E'. Then we denote by E'_{ε} the normed space whose unit sphere is ε .

4) A completely regular Hausdorff space X is said to be extremally disconnected if for any open set U in X the closure \overline{U} of U is also open. A compact Hausdorff space is stonian if it is extremally disconnected.

5) Cf. [5, p. 168, Theorem 9].

6) A topological space is separable if it contains a countable dense subset.

7) If X is a topological space, then we denote by $C_u(X)$ the Banach space of all bounded continuous functions on X with $||f|| = \sup_{x \in X} |f(x)|$.

example is the following: Let X be the topological product space of the closed unit intervals I_{λ} ($\lambda \in \Lambda$) and let the set Λ of indices be uncountable. Let S be the unit sphere of $l_q(\Lambda)$ with the topology $\sigma(l_q(\Lambda), l_p(\Lambda))$, where p > 1, q > 1 and $p^{-1} + q^{-1} = 1$. Then we can regard S as a closed subset in X and $l_p(\Lambda)$ as a linear subspace of C(S). Day showed that there is no continuous linear operator T from $L = l_p(\Lambda)$ into $C_u(X)$ such that, for each f in L, Tf is an extension of f. We see that the space L is generated by a weakly compact set in $C_u(S)$. By Theorem 1 and Theorem of Arens,⁸⁾ we have the following

Theorem 3. Let X be a paracompact space and let F be a closed subset in X. Let L be a closed linear subspace in $C_u(F)$ which is generated by a compact set in $C_u(F)$. Then there is a simultaneous extension of L into $C_u(X)$.

Corollary (Arens). Let X be a paracompact space and let F be a closed subset in X. Let X be a separable closed linear subspace in $C_u(F)$. Then there is a simultaneous extension of L into $C_u(X)$.

3. We next extend a theorem of Bartle, Dunford and J. Schwartz⁹ to the case of locally convex topological linear spaces.

Theorem 4. (a) Let X, Y be completely regular Hausdorff spaces and let Y be a hemi-compact¹⁰⁾ k-space. Let \mathfrak{S} be the set of all compact subsets in X and let \mathfrak{T} be the set of all compact subsets in Y. Then a continuous linear operator T of $C_{\mathfrak{S}}(X)$ into $C_{\mathfrak{X}}(Y)$ is weakly compact if and only if there are a kernel function k(x, y) on $K \times Y$ (for some $K \in \mathfrak{S}$) and a non-negative Borel measure \mathfrak{p} on K such that

(*)
$$(Tf)y = \int (f \mid K)(x)k(x, y)\nu(dx)$$

and k satisfies the conditions:

(i) for any $y \in Y$, $k(x, y) \in L^1(K, \nu)$,

(ii) for any Borel set E in K, $\int_{E} k(x, y)\nu(dx)$ is a continuous function on Y,

(iii) for any $H \in \mathfrak{T}$, $\sup_{y \in H} \int |k(x, y)| \nu(dx) < +\infty$.

(b) Let X be a completely regular Hausdorff space and let Y be a hemi-compact k_0 -space. Let \mathfrak{S} be the set of all compact subsets of X and let \mathfrak{T} be the set of all compact subsets in Y. Then a continuous linear operator T of $C_{\mathfrak{S}}(X)$ into $C_{\mathfrak{S}}(Y)$ is compact if and only if there is a kernel function k(x, y) on $K \times Y$ (for some $K \in \mathfrak{S}$) and non-negative Borel measure ν on K such that the equation (*) is satis-

⁸⁾ Cf. [1, p. 18, Theorem 4.1].

⁹⁾ Cf. [3, Theorems 4.3 and 4.4].

¹⁰⁾ A topological space X is said to be hemi-compact if there is a sequence $\{K_n\}$ of compact subsets in X such that $X = \bigcup_{n=1}^{\infty} K_n$ and $K \subset \text{some } K_n$ for any compact set K in X.

No. 9] Weakly Compact Operators on the Spaces of Continuous Functions

fied and k satisfies the condition (i) and

(iv) if $y_{\lambda} \rightarrow y_{0}$ in Y, then $\lim_{y_{\lambda} \rightarrow y_{0}} \int |k(x, y_{\lambda}) - k(x, y_{0})| \nu(dx) = 0.$

Let J be a set of indices. Then we denote by m(J) the space of all bounded real functions on J with $||x|| = \sup_{\substack{j \in J \\ j \in J}} |x(j)|$, and denote by $c_0(J)$ the subspace of those x in m(J) for which for each $\varepsilon > 0$ the set of j with $|x(j)| > \varepsilon$ is finite; that is $c_0(J)$ is the set of functions vanishing at infinity on the discrete space J. Now, we consider a compact space such that all points are isolated except one point. Then the conditions (ii) and (iii) of Theorem 4 imply the condition (iv) if Y satisfies the 1st axiom of countability, and we have the following

Theorem 5. Let E be a separable metrizable locally convex linear space. Then any weakly compact linear operator of $c_0(J)$ into E is compact.

Corollary 1 (Grothendieck). Any weakly compact linear operator of c_0 into a locally convex Hausdorff topological linear space is compact.

Corollary 2. Let E be a Banach space whose dual E' is separable. Then any continuous linear operator of the space m into E' is compact.

Added in proof: Theorem 3 is not a proper extension of Corollary of Theorem 3. But this theorem can be extended under some conditions to the case of locally convex linear spaces.

References

- R. Arens: Extension of functions on fully normal spaces, Pacific J. Math., 2 (1952).
- [2] R. G. Bartle: On compactness in functional analysis, Trans. Amer. Math. Soc., 79 (1955).
- [3] R. G. Bartle, N. Dunford, and J. Schwartz: Weak compactness and vector measures, Canad. J. Math., 7 (1955).
- [4] M. M. Day: Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc., 78 (1955).
- [5] A. Grothendieck: Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math., 5 (1953).
- [6] J. L. Kelly: General Topology, New York (1955).