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The purpose of the present note is to give a sufficient condition
under which the inequality Ind R S_< Ind R Ind S holds good, where
Ind denotes the large inductive dimension. We define inductively
IndR. Let Ind---1, where is the empty set. IndR<_n(--0, 1,
2,...) if and only if for any pair FG of a closed set F and an
open set G there exists an open set H with FHG such that
Ind (H--H)

_
n-- 1. When Ind R_ n-- 1 is false and Ind R

_
n is true,

we call Ind R- n. When Ind R

_
n is false for any n, we call Ind R-- .

Let 1[ be a collection of subsets of a topological space R. Then
we call It is discrete or locally finite f every point of R has a
neighborhood which meets at most respectively one element or finite
elements of lI. We call lI s a-discrete or a-locally finite if lI is a
sum of a countable number .of discrete or locally finite subcollections
respectively. A binary covering is a covering which consists of two
elements.

Lemma 1. Let R be a hereditarily paracompact Hausdorff space.
Then the following statements ave valid.

1) (Subset theorem). For any subset T of RInd T _Ind R.

2) (Sum theorem). If F, i--l, 2,..., ave closed, Ind F--sup
Ind F.

3) (Local dimension theorem). For any collection lI of open sets
Ind--{U; Uel}-sup{Ind U;

This s proved by C. H. Dowker 1. The main part of the
following lemma is essentially proved in Morita 4_, but we give
here full proof for the sake of completeness.

Lemma 2. In a hereditarily paracompact Hausdorff space R the
following conditions are equivalent.

1) Ind R_n.

2) Every open covering can be refined by a locally finite and

a-discrete open covering such that for any V Ind (V-- V)

_
n-- 1.

3) Every binary open covering can be refined by a a-locally

finite open covering such that for any V Ind (V- V)

_
n- 1.

Proof. First we prove the implication 1)->2). Let lI be an
arbitrary open covering of R; then by A. H. Stone’s theorem [_5J li
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can be refined by an open covering Hi, where each

a e A} is a discrete collection o’f open sets. Let U-- U(i, a); a e A},
i-1,2,...; then {U; i---1,2,...} can be refined by a locally finite
open covering {W; i-l, 2,...} such that WU for every i. Since
a paracompact Hausdorff space is normal and locally finite open cover-
ing of a normal space is shrinkable," {Wi; i-l, 2,...} can be refined
by a closed covering {F; i--1, 2,...} such that FW for every i.

Let V be an open set with F V W such that Ind (V-- V) <_ n-- 1.

Let -{V(i, )- VU(i, ); eA}; then -- satisfies all the
requirements in 2).

The implication 2) -> 3) is evident.
Let us prove 3) implies 1). Let FG be an arbitrary pair of

a closed set Fand an open set G. Let L and Mbe open sets with

FLLMMG. The binary open covering {M,R--L} is re-

fined by an open covering --03, where --{V(i,a);eA}, i--1,

2,..., are locally finite, such that for any Ve Ind (V-- V)n--1.
Let
(1) C-,.-{V--V; V,], C---,.-{V-V; Ve};
then we have C-- C,. By Lemma 1 we have

( 2 ) Ind C<_n--1.
Here we notice that by Lemma I Ind D_< n--1 for any subset D of C.
Let
(3) H--{V(i, a); V(i, a)L, aeA,}, K--{V(i, a); V(i,
L O, o A}.

Put
(4) PI--H, Q-K--H, Pi--H-- Kj, Qi-K--Hj, /-2,3,...,

P-P, Q=Q.(5)
Then we have

(6)

(7) P,--.,Q-, P,M (i--1, 2,...), Q-.,L-.
Finally we put

R- P,( Q,),
t-----1 i=l

(8) W-R-Q.

Since QL- by (7) and L is open, we have QL-q and hence

FLV. Since V=R-QR-QPMG by (6)and(7),
we have

1) A covering [U.;aeA} is called shrinkable if there exists a closed covering
IF.; a e A} such that F. U. for every a e A,
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(9) FWG.
Since P-P(P-P) and Q-Q(Q-Q), we have from (6)
(10) R-PQ((P-P))( (Q-Q)).

=I i=l

From (7) and the openness of P it follows that PQ-. Hence
P(Q-Q)-O. Therefore we have

(11) Q-Q (P-P),-,( (V-V)).
=i =i

Since P--P<H--H by (4) and H--HcCcC, we have

(12) P--P<C.
Similarly we have

(13) Q-QC.
Combining (12) and (13) with (11), we have Q-QcC and hence

(14) Ind (Q-Q) <_n- 1.
Thus we have

(15) Ind (W-- W) _< n-- 1,
and the lemma is completely proved.

Lemma 3. In a topological space R the following conditions are
equivalent with each other.

1) R is a metrizable space with Ind R<_n.
2) There exists a a-discrete open basis of R such that for every

VeO.% Ind (V--V)gn--1.
3) There exists a a-locally finite open basis of R such that

for every V e Ind (V- V) <_ n-- 1.
Proof. The implication 2)-+.3) is evident.
Let be a a-locally finite open basis of R such that for every
V Ind(V--V)<_n-1. Then R is metrizable by a well-known
meterization theorem of J. Nagata and Yu. M. Smirnov. Moreover we
get IndR_<n by a theorem of Kattov [2 and Morita 4. Hence
3) implies 1).

The implication 1)-->2) is verified as follows. Let R be a metric
space with IndR<_n. Then by Lemma 2 there exists for every
positive integer i a a-discrete open covering the diameter of each
element of which is less than 1/i such that for every V e Ind (V--V)
_<n-1. Then - is a a-discrete open basis of R such that

=1

for every Ve Ind(V-V)<_n-1, and the proof of the lemma is
finished.

Lemma 4. Let R be a perfectly normal, paracompact space

2) A space R is called perfectly normal if R is normal and every open subset
of R is an F.
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and S a metric space. Then RS is a hereditarily paracompact
Hausdorff space.

This is proved by Michael
Theorem. Let R be a perfectly normal, paracompact space and

S a metric space. If either R or S holds good, we have
IndRS_<Ind R+Ind S.

Proof. R S is hereditarily paracompact by Lemma 4. When
Ind R or Ind S is infinite, the theorem trivially holds good. Hence
we prove the theorem for the case Ind R-m< , Ind S=n< . We
shall carry out the proof by the induction on k=m+n. When m+n
=--1, either R or S is empty. Hence the theorem is evidently true.
Now we assume that the theorem holds for the case when IndR
/Ind S is smaller than k. Let m+n-k.

Let ( be an arbitrary binary open covering of RS. Let us
construct a refinement of ( satisfying the condition 3) of Lemma 2.

Let -[V; eB--B} be an open basis of S such that for every

V e Ind (V- V)_<n- 1 and - V; e B} is discrete for every i.
Let II-{U,; a eA} be an open basis of R and

(16) C- {(, fl); (a, fl) A B, U, V refines }.
Then evidently U, V; (a, fl) e C} is an open covering of R S which
refines (. Let
(17) As- {a; (, ) e C},
and
(lS) Us-
Since R is perfectly normal, there exists a sequence of open sets G,
i- 1, 2,. ., such that

(19) G G G G... and G- U.
Consider an open covering
(20) s- {UGsi; As, i= 1, 2,... }
of Us. Then by Lemmas 1 and 2 1I can be refined by an open covering- of U, where each ![. is discrete in U, such that for

every W e Ind (W-- W)_< n-- 1. Here we notice that the closure of
We in Us is the same as that in the whole space R by (19). Let
(21) gsj-- W; W
Then 9 is discrete in R by (19). Let
(22) -{W V; W,flB}.
Then 9 is discrete in RS. Since W V--W V-((W--W) V)
(W(V- V)), we have

(23) Ind (W V-W V)<_m+n-1,
for any W Veg., by the induction assumption and Lemma 1.
Evidently
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(24)
is an open covering of RXS and refines ff. Thus we conclude that
Ind R S<_m q- n by Lemma 2 and the theorem is proved.
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