135. On the Dimension of Product Spaces

By Keiô NAGAMI

Ehime University, Matsuyama (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

The purpose of the present note is to give a sufficient condition under which the inequality $\operatorname{Ind} R \times S \leq \operatorname{Ind} R + \operatorname{Ind} S$ holds good, where Ind denotes the large inductive dimension. We define inductively Ind R. Let $\operatorname{Ind} \phi = -1$, where ϕ is the empty set. $\operatorname{Ind} R \leq n \ (=0, 1, 2, \cdots)$ if and only if for any pair $F \subset G$ of a closed set F and an open set G there exists an open set H with $F \subset H \subset G$ such that $\operatorname{Ind} (\overline{H} - H) \leq n - 1$. When $\operatorname{Ind} R \leq n - 1$ is false and $\operatorname{Ind} R \leq n$ is true, we call $\operatorname{Ind} R = n$. When $\operatorname{Ind} R \leq n$ is false for any n, we call $\operatorname{Ind} R = \infty$.

Let \mathfrak{l} be a collection of subsets of a topological space R. Then we call \mathfrak{l} is *discrete* or *locally finite* if every point of R has a neighborhood which meets at most respectively one element or finite elements of \mathfrak{l} . We call \mathfrak{l} is σ -discrete or σ -locally finite if \mathfrak{l} is a sum of a countable number of discrete or locally finite subcollections respectively. A *binary covering* is a covering which consists of two elements.

Lemma 1. Let R be a hereditarily paracompact Hausdorff space. Then the following statements are valid.

1) (Subset theorem). For any subset T of R Ind $T \leq \text{Ind } R$.

2) (Sum theorem). If F_i , $i=1, 2, \cdots$, are closed, $\operatorname{Ind} \bigcup_{i=1}^{\infty} F_i = \sup$ Ind F_i .

3) (Local dimension theorem). For any collection \mathfrak{U} of open sets $\operatorname{Ind} \subseteq \{U; U \in \mathfrak{U}\} = \sup \{\operatorname{Ind} U; U \in \mathfrak{U}\}.$

This is proved by C. H. Dowker [1]. The main part of the following lemma is essentially proved in Morita [4], but we give here full proof for the sake of completeness.

Lemma 2. In a hereditarily paracompact Hausdorff space R the following conditions are equivalent.

1) Ind $R \leq n$.

2) Every open covering can be refined by a locally finite and σ -discrete open covering \mathfrak{V} such that for any $V \in \mathfrak{V}$ Ind $(\overline{V}-V) \leq n-1$.

3) Every binary open covering can be refined by a σ -locally finite open covering \mathfrak{V} such that for any $V \in \mathfrak{V}$ Ind $(\overline{V} - V) \leq n-1$.

Proof. First we prove the implication $1 \rightarrow 2$). Let \mathfrak{ll} be an arbitrary open covering of R; then by A. H. Stone's theorem [5] \mathfrak{ll}

can be refined by an open covering $\bigcup_{i=1}^{\infty} \mathbb{U}_i$, where each $\mathbb{U}_i = \{U(i, \alpha); \alpha \in A_i\}$ is a discrete collection of open sets. Let $U_i = \bigcup \{U(i, \alpha); \alpha \in A_i\}$, $i=1, 2, \cdots$; then $\{U_i; i=1, 2, \cdots\}$ can be refined by a locally finite open covering $\{W_i; i=1, 2, \cdots\}$ such that $W_i \subset U_i$ for every *i*. Since a paracompact Hausdorff space is normal and locally finite open covering of a normal space is shrinkable,¹⁾ $\{W_i; i=1, 2, \cdots\}$ can be refined by a closed covering $\{F_i; i=1, 2, \cdots\}$ such that $F_i \subset W_i$ for every *i*. Let V_i be an open set with $F_i \subset V_i \subset W_i$ such that $\operatorname{Ind}(\overline{V}_i - V_i) \leq n-1$. Let $\mathfrak{B}_i = \{V(i, \alpha) = V_i \cap U(i, \alpha); \alpha \in A_i\}$; then $\mathfrak{B} = \bigcup_{i=1}^{\infty} \mathfrak{B}_i$ satisfies all the requirements in 2).

The implication $2) \rightarrow 3$) is evident.

Let us prove 3) implies 1). Let $F \subset G$ be an arbitrary pair of a closed set F and an open set G. Let L and M be open sets with $F \subset L \subset \overline{L} \subset M \subset \overline{M} \subset G$. The binary open covering $\{M, R - \overline{L}\}$ is refined by an open covering $\mathfrak{B} = \overset{\sim}{\underset{i=1}{\overset{\sim}{\smile}}} \mathfrak{B}_i$, where $\mathfrak{B}_i = \{V(i, \alpha); \alpha \in A_i\}, i=1,$ $2, \cdots$, are locally finite, such that for any $V \in \mathfrak{B}$ Ind $(\overline{V} - V) \leq n-1$. Let

(1)
$$C_i = \bigcup_i \{V - V; V \in \mathfrak{B}_i\}, \quad C = \bigcup_i \{V - V; V \in \mathfrak{B}\};$$

then we have $C = \sum_{i=1}^{\infty} C_i$. By Lemma 1 we have

(2)
$$\operatorname{Ind} C \leq n-1.$$

Here we notice that by Lemma 1 Ind $D \le n-1$ for any subset D of C. Let

(3)
$$H_i = \bigcup \{V(i, \alpha); V(i, \alpha) \frown \overline{L} \neq \phi, \alpha \in A_i\}, \quad K_i = \bigcup \{V(i, \alpha); V(i, \alpha) \frown \overline{L} = \phi, \alpha \in A_i\}.$$

Put
(4) $P_1 = H_1, \ Q_1 = K_1 \frown \overline{H}_1, \ P_i = H_i \frown \bigcup_{j \leq i} \overline{K}_j, \ Q_i = K_i \frown \bigcup_{j \leq i} \overline{H}_j, \ i = 2, 3, \cdots,$

$$(5) P = \overset{\sim}{\underset{i=1}{\overset{\sim}{\longrightarrow}}} P_i, \quad Q = \overset{\sim}{\underset{i=1}{\overset{\sim}{\longrightarrow}}} Q_i.$$

Then we have

(7) $P \frown Q = \phi, \quad \overline{P}_i \subset \overline{M} \quad (i=1, 2, \cdots), \quad Q \frown \overline{L} = \phi.$ Finally we put

$$W=R-\overline{Q}.$$

Since $Q \cap L = \phi$ by (7) and L is open, we have $\overline{Q} \cap L = \phi$ and hence $F \subset L \subset V$. Since $V = R - \overline{Q} \subset R - \overset{\circ}{\underset{i=1}{\smile}} \overline{Q}_i \subset \overset{\circ}{\underset{i=1}{\smile}} \overline{P}_i \subset \overline{M} \subset G$ by (6) and (7), we have

¹⁾ A covering $\{U_{\alpha}; \alpha \in A\}$ is called *shrinkable* if there exists a closed covering $\{F_{\alpha}; \alpha \in A\}$ such that $F_{\alpha} \subset U_{\alpha}$ for every $\alpha \in A$.

K. NAGAMI

$$(9) F \subset W \subset G.$$

Since $\overline{P}_i = P_i \cup (\overline{P}_i - P_i)$ and $\overline{Q}_i = Q_i \cup (\overline{Q}_i - Q_i)$, we have from (6) (10) $R = P \cup Q \cup (\overset{\circ}{\cup} (\overline{P}_i - P_i)) \cup (\overset{\circ}{\cup} (\overline{Q}_i - Q_i))$

(10)
$$\mathcal{R} = \mathcal{P} \cup \mathcal{Q} \cup (\bigcup_{i=1}^{i} (\mathcal{P}_i - \mathcal{P}_i)) \cup (\bigcup_{i=1}^{i} (\mathcal{Q}_i - \mathcal{Q}_i)).$$

From (7) and the openness of P it follows that $P \frown \overline{Q} = \phi$. Hence $P \frown (\overline{Q} - Q) = \phi$. Therefore we have

(11)
$$\overline{Q} - Q \subset \overset{\sim}{\underset{i=1}{\smile}} (\overline{P}_i - P_i) \cup (\overset{\sim}{\underset{i=1}{\smile}} (\overline{Q}_i - Q_i)).$$

Since $\overline{P}_i - P_i \subset \overline{H}_i - H_i$ by (4) and $\overline{H}_i - H_i \subset C_i \subset C$, we have (12) $\overline{P}_i - P_i \subset C$.

Similarly we have

(13)

Combining (12) and (13) with (11), we have $\overline{Q}-Q \subset C$ and hence (14) Ind $(\overline{Q}-Q) \leq n-1$.

Thus we have

(15)

Ind
$$(\overline{W} - W) \le n - 1$$

 $\overline{Q}_i - Q_i \subset C.$

and the lemma is completely proved.

Lemma 3. In a topological space R the following conditions are equivalent with each other.

1) R is a metrizable space with Ind $R \le n$.

2) There exists a σ -discrete open basis \mathfrak{V} of R such that for every $V \in \mathfrak{V}$ Ind $(\overline{V} - V) \leq n-1$.

3) There exists a σ -locally finite open basis \mathfrak{V} of R such that for every $V \in \mathfrak{V}$ Ind $(\overline{V} - V) \leq n - 1$.

Proof. The implication $2 \rightarrow 3$ is evident.

Let \mathfrak{V} be a σ -locally finite open basis of R such that for every $V \in \mathfrak{V}$ Ind $(\overline{V} - V) \leq n-1$. Then R is metrizable by a well-known meterization theorem of J. Nagata and Yu. M. Smirnov. Moreover we get Ind $R \leq n$ by a theorem of Katětov [2] and Morita [4]. Hence 3) implies 1).

The implication $1) \rightarrow 2$) is verified as follows. Let R be a metric space with $\operatorname{Ind} R \leq n$. Then by Lemma 2 there exists for every positive integer i a σ -discrete open covering \mathfrak{B}_i the diameter of each element of which is less than 1/i such that for every $V \in \mathfrak{B}_i$ $\operatorname{Ind} (\overline{V} - V) \leq n-1$. Then $\mathfrak{B} = \overset{\circ}{\underset{i=1}{\overset{\circ}{\smile}}} \mathfrak{B}_i$ is a σ -discrete open basis of R such that for every $V \in \mathfrak{B}$ $\operatorname{Ind} (\overline{V} - V) \leq n-1$, and the proof of the lemma is finished.

Lemma 4. Let R be a perfectly normal,²⁾ paracompact space

562

²⁾ A space R is called *perfectly normal* if R is normal and every open subset of R is an F_{σ} .

and S a metric space. Then $R \times S$ is a hereditarily paracompact Hausdorff space.

This is proved by Michael [3].

Theorem. Let R be a perfectly normal, paracompact space and S a metric space. If either $R \neq \phi$ or $S \neq \phi$ holds good, we have Ind $R \times S \leq \text{Ind } R + \text{Ind } S$.

Proof. $R \times S$ is hereditarily paracompact by Lemma 4. When Ind R or Ind S is infinite, the theorem trivially holds good. Hence we prove the theorem for the case Ind $R=m<\infty$, Ind $S=n<\infty$. We shall carry out the proof by the induction on k=m+n. When m+n=-1, either R or S is empty. Hence the theorem is evidently true. Now we assume that the theorem holds for the case when Ind R+Ind S is smaller than k. Let m+n=k.

Let \mathfrak{B} be an arbitrary binary open covering of $R \times S$. Let us construct a refinement of \mathfrak{B} satisfying the condition 3) of Lemma 2. Let $\mathfrak{B} = \{V_{\beta}; \beta \in B = \bigcup_{i=1}^{\infty} B_i\}$ be an open basis of S such that for every $V_{\beta} \in \mathfrak{B}$ Ind $(\overline{V}_{\beta} - V_{\beta}) \leq n-1$ and $\mathfrak{B}_i = \{V_{\beta}; \beta \in B_i\}$ is discrete for every i. Let $\mathfrak{U} = \{U_n; \alpha \in A\}$ be an open basis of R and

(16) $C = \{(\alpha, \beta); (\alpha, \beta) \in A \times B, U_{\alpha} \times V_{\beta} \text{ refines } \emptyset\}.$ Then evidently $\{U_{\alpha} \times V_{\beta}; (\alpha, \beta) \in C\}$ is an open covering of $R \times S$ which refines \emptyset . Let

(17) $A_{\beta} = \{ \alpha; (\alpha, \beta) \in C \},$

and

(18) $U_{\beta} = \bigcup \{ U_{\alpha}; \alpha \in A_{\beta} \}.$

Since R is perfectly normal, there exists a sequence of open sets G_{μ_i} , $i=1, 2, \cdots$, such that

 $\overline{G}_{\beta_1} \subset G_{\beta_2} \subset \overline{G}_{\beta_2} \subset G_{\beta_3} \subset \cdots$ and $\overset{\circ}{\smile} G_{\beta_i} = U_{\beta_i}$ (19)Consider an open covering $\mathfrak{U}_{\beta} = \{ U_{\alpha} \frown G_{\beta_i}; \alpha \in A_{\beta}, i = 1, 2, \cdots \}$ (20)of $U_{\scriptscriptstyle\beta}$. Then by Lemmas 1 and 2 $\,\mathfrak{U}_{\scriptscriptstyle\beta}$ can be refined by an open covering $\mathfrak{W}_{\beta} = \bigcup \mathfrak{W}_{\beta_i}$ of U_{β} , where each \mathfrak{W}_{β_i} is discrete in U_{β} , such that for every $W \in \mathfrak{W}_{\beta}$ Ind $(\overline{W} - W) \leq n-1$. Here we notice that the closure of $W \in \mathfrak{W}_{\beta}$ in U_{β} is the same as that in the whole space R by (19). Let $\mathfrak{W}_{\beta_{ij}} = \{ W; W \in \mathfrak{W}_{\beta_i}, W \subset G_{\beta_j} \}.$ (21)Then $\mathfrak{W}_{\beta_{ij}}$ is discrete in R by (19). Let (22) $\mathfrak{L}_{ijk} = \{ W \times V_{\beta}; W \in \mathfrak{W}_{\beta ij}, \beta \in B_k \}.$ Then \mathfrak{L}_{ijk} is discrete in $R \times S$. Since $\overline{W \times V_{\beta}} - W \times V_{\beta} = ((\overline{W} - W) \times \overline{V}_{\beta})$ $\smile (\overline{W} \times (\overline{V}_{\beta} - V_{\beta})),$ we have

(23) $\operatorname{Ind} (\overline{W \times V_{\beta}} - W \times V_{\beta}) \leq m + n - 1,$

for any $W \times V_{\beta} \in \mathfrak{L}_{ijk}$, by the induction assumption and Lemma 1. Evidently

No. 9]

K. NAGAMI

(24)
$$\mathfrak{L} = \bigcup_{i,j,k=1}^{\infty} \mathfrak{L}_{ijk}$$

is an open covering of $R \times S$ and refines (G). Thus we conclude that Ind $R \times S \le m+n$ by Lemma 2 and the theorem is proved.

References

- C. H. Dowker: Local dimension of normal spaces, Quart. J. Math., 6, 101-120 (1955).
- [2] M. Katětov: On the dimension of non-separable spaces I, Čeckoslovack Mat. Ž., 2 (77), 333-368 (1952).
- [3] E. Michael: A note on paracompact spaces, Proc. Amer. Math. Soc., 4, 831-838 (1953).
- [4] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350-362 (1954).
- [5] A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc., 54, 977-982 (1948).