152. The Space of Bounded Solutions and Removable Singularities of the Equation $\Delta u+a u_{x}+b u_{y}+c u=0(c \leqq 0)$

By Yoshio Katô
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1960)

1. Let D be a bounded domain in the complex z-plane. We consider a triple (a, b, c) where a and b are twice continuously differentiable functions and c is a non-positive, continuously differentiable function defined in a domain containing the closure of $D .{ }^{1)}$ We say that such a triple is admissible. Consider the partial differential equation of elliptic type:

$$
\begin{equation*}
\Delta u+a u_{x}+b u_{y}+c u=0, \tag{1}
\end{equation*}
$$

where $\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}, u_{x}=\partial u / \partial x$ and $u_{y}=\partial u / \partial y$. Using notations of exterior differentials, (1) can be written as follows:

$$
L u=d^{*} d u+d u_{\wedge} \alpha+u \beta=0,
$$

where $\alpha=-b d x+a d y$ and $\beta=c d x d y$.
We denote by $B(a, b, c ; D)$ the totality of bounded solutions of the equation (1) in D. Here a solution of (1) is always assumed to be twice continuously differentiable. Then $B(a, b, c ; D)$ is a Banach space with the norm $\|u\|=\sup _{D}|u|$ (see [1]). Take another admissible triple $(\bar{a}, \bar{b}, \bar{c})$. In this note, we shall prove that $B(a, b, c ; D)$ is isomorphic with $B(\bar{a}, \bar{b}, \bar{c} ; D)$ as Banach spaces. In Nakai [5], this comparison problem was considered for triples ($0,0, c$) on a Riemann surface under some condition for c. Finally we shall characterize sets of removable singularities for bounded solutions of (1). ${ }^{2)}$
2. Let $\left\{D_{n}\right\}_{n=1}^{\infty}$ be an exhaustion of D, i.e. D_{n} is a subdomain of D whose closure \bar{D}_{n} is contained in D and whose boundary ∂D_{n} consists of a finite number of closed smooth Jordan curves and moreover $\left\{D_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\bar{D}_{n} \subset D_{n+1} \quad \text { and } \quad D=\bigcup_{n=1}^{\infty} D_{n} .
$$

Let $G_{n}(\zeta, z)$ be the Green function of (1) with respect to D_{n} with pole at ζ. It is well known that $G_{n}(\zeta, z)$ is the Green function of the adjoint equation of (1)

$$
\begin{equation*}
L^{*} u=d^{*} d u--d u_{\wedge} \alpha+(\beta-d \alpha) u=0 \tag{*}
\end{equation*}
$$

with respect to D_{n} with pole at z and, for each pair (ζ, z) in D, the sequence $\left\{G_{n}(\zeta, z)\right\}$ converges non-decreasingly to $G(\zeta, z)$ which is a

[^0]solution of (1) in z and a solution of (1^{*}) in ζ (see [3] and [4]). Moreover $G(\zeta, z)$ is bounded outside a neighbourhood of z as a function of ζ. We shall call $G(\zeta, z)$ the Green function with respect to D.

Let S be a closed disk with center z in D. Then we can prove
Lemma 1. There exists a positive constant K for each point z in D such that

$$
\int_{D_{n}-S} \int_{S}\left[\left(\frac{\partial G_{n}}{\partial \xi}(\zeta, z)\right)^{2}+\left(\frac{\partial G_{n}}{\partial \eta}(\zeta, z)\right)^{2}\right] d \xi d \eta<K
$$

for all n satisfying $D_{n} \sqsupset S$, where $\zeta=\xi+i \eta$.
Proof. Fix a point z in D. Let u be a solution of (1*) in $D_{n}-\{z\}$ and vanishing on ∂D_{n}. For such a function u, we obtain

$$
\begin{equation*}
d u_{\wedge} * d u=d\left(u^{*} d u-\frac{1}{2} u^{2} \alpha\right)+u^{2}\left(\beta-\frac{1}{2} d \alpha\right) \tag{2}
\end{equation*}
$$

Integrating (2) on $D_{n}-S$, we have

$$
\begin{equation*}
\int_{D_{n}-S} \int_{\perp} d u_{\wedge}{ }^{*} d u=\int_{\partial S}\left(u^{*} d u-\frac{1}{2} u^{2} \alpha\right)+\int_{D_{n}-S} \int u^{2}\left(\beta-\frac{1}{2} d \alpha\right) \tag{3}
\end{equation*}
$$

since u vanishes on ∂D_{n}. Applying (3) to $G_{n}(\zeta, z)$, we get the assertion of Lemma 1 from the boundedness of $a, b, \partial a / \partial \xi, \partial b / \partial \eta$, and c in D and from the uniform boundedness of $G_{n}(\zeta, z), \partial G_{n}(\zeta, z) / \partial \xi$ and $\partial G_{n}(\zeta, z) / \partial \eta$ on ∂S.

Lemma 2. (i) If fis a bounded continuous function in D, then, for each point z in D,

$$
\lim _{n} \iint_{D_{n}} G_{n}(\zeta, z) f(\zeta) d \xi d \eta=\iint_{D} G(\zeta, z) f(\zeta) d \xi d \eta<\infty
$$

and

$$
\lim _{n} \iint_{D_{n}} \frac{\partial G_{n}}{\partial \xi}(\zeta, z) f(\zeta) d \xi d \eta=\iint_{D} \frac{\partial G}{\partial \xi}(\zeta, z) f(\zeta) d \xi d \eta<\infty
$$

(ii) If a uniformly bounded sequence $\left\{f_{n}\right\}$ of continuous functions in D converges to a function f defined in D uniformly on every compact subset of D, then for each point z in D

$$
\lim _{n} \iint_{D_{n}} G_{n}(\zeta, z)\left(f_{n}(\zeta)-f(\zeta)\right) d \xi d \eta=0
$$

and

$$
\lim _{n} \iint_{D_{n}} \frac{\partial G_{n}}{\partial \xi}(\zeta, z)\left(f_{n}(\zeta)-f(\zeta)\right) d \xi d \eta=0
$$

Proof of (i). We prove the second identity since the first is trivial. Fix a point z in D. By Lemma 1 and Fatou's lemma, we can see easily

$$
\begin{equation*}
\int_{D-S} \int_{S}\left[\left(\frac{\partial G}{\partial \xi}(\zeta, z)\right)^{2}+\left(\frac{\partial G}{\partial \eta}(\zeta, z)\right)^{2}\right] d \xi d \eta \leqq K \tag{4}
\end{equation*}
$$

For a compact set A of D which contains S, the Schwarz inequality and Lemma 1 imply

$$
\begin{align*}
\left|\iint_{D_{n}-A} \frac{\partial G_{n}}{\partial \xi}(\zeta, z) f(\zeta) d \xi d \eta\right|^{2} & \leqq \iint_{D_{n-A}}\left(\frac{\partial G_{n}}{\partial \xi}\right)^{2} d \xi d \eta \\
& \times \int_{D_{n}-A}|f|^{2} d \xi d \eta \tag{5}\\
& \leqq K \cdot \sup _{D}|f|^{2} \cdot\left(\text { Area of }\left(D_{n}-A\right)\right)
\end{align*}
$$

for sufficiently large n. By the same argument as above, we get, using (4),

$$
\begin{equation*}
\left|\iint_{D-A} \frac{\partial G}{\partial \xi}(\zeta, z) f(\zeta) d \xi d \eta\right|^{2} \leqq K \cdot \sup _{D}|f|^{2} \cdot(\text { Area of }(D-A)) \tag{6}
\end{equation*}
$$

On the other hand $\frac{\partial G_{n}}{\partial \xi}(\zeta, z)$ converges to $\frac{\partial G}{\partial \xi}(\zeta, z)$ uniformly on each compact set of D as n tends to infinity. Hence we get

$$
\begin{equation*}
\iiint_{A}\left(\frac{\partial G}{\partial \xi}-\frac{\partial G_{n}}{\partial \xi}\right) f(\zeta) d \xi d \eta \rightarrow 0 \quad(n \rightarrow \infty) \tag{7}
\end{equation*}
$$

From (5), (6) and (7), we can conclude (i) of Lemma 2.
Proof of (ii). By our assumption there exists a constant M independent of n such that $\left|f_{n}(\zeta)\right|<M$ in D. If we apply (5) with $f=f_{n}-f$, we obtain

$$
\left|\int_{D_{n}-A} \frac{\partial G_{n}}{\partial \xi}(\zeta, z)\left(f_{n}(\zeta)-f(\zeta)\right) d \xi d \zeta\right|^{2} \leqq 4 K M^{2} \cdot\left(\text { Area of }\left(D_{n}-A\right)\right) .
$$

On A, the sequence $\partial G_{n} / \partial \xi \cdot\left(f_{n}-f\right)$ converges to 0 uniformly. Thus we get the second equality. The first identity is obvious. Therefore, we can conclude (ii) of Lemma 2.
3. Theorem 1. For any two admissible triples (a, b, c) and (\bar{a}, $\bar{b}, \bar{c})$, Banach spaces $B(a, b, c ; D)$ and $B(\bar{a}, \bar{b}, \bar{c} ; D)$ are isomorphic.

Proof. Let $\bar{G}_{n}(\zeta, z)$ and $\bar{G}(\zeta, z)$ be Green functions with respect to D_{n} and D corresponding to the triple ($\bar{a}, \bar{b}, \bar{c}$) respectively. For a bounded continuous function f in D, we define transformations $T f$ and $t f$ as follows:

$$
\begin{aligned}
T f(z) & =f(z)+\frac{1}{2 \pi} \iint_{D}[(c(\zeta)-\bar{c}(\zeta)) \bar{G}(\zeta, z)+\{(a(\zeta)-\bar{a}(\zeta)) \\
& \left.\times \bar{G}(\zeta, z)\}_{\xi}+\{(b(\zeta)-\bar{b}(\zeta)) \bar{G}(\zeta, z)\}_{\eta}\right] f(\zeta) d \xi d \eta
\end{aligned}
$$

and

$$
\begin{aligned}
t f(z)=f(z) & +\frac{1}{2 \pi} \iint_{D}[(\bar{c}(\zeta)-c(\zeta)) G(\zeta, z)+\{(\bar{a}(\zeta)-a(\zeta)) \\
& \left.\times G(\zeta, z)\}_{\xi}+\{(\bar{b}(\zeta)-b(\zeta)) G(\zeta, z)\}_{\eta}\right] f(\zeta) d \xi d \eta
\end{aligned}
$$

By (i) of Lemma 2, we see that $T f(z)<\infty$ and $t f(z)<\infty$ for each point z in D. We also define auxiliary transformations $T_{n} f$ and $t_{n} f$ of a bounded continuous function f defined in D_{n} as follows:

$$
\begin{aligned}
T_{n} f(z) & =f(z)+\frac{1}{2 \pi} \iint_{D_{n}}\left[(c(\zeta)-\overline{\boldsymbol{c}}(\zeta)) \bar{G}_{n}(\zeta, z)\right. \\
& +\left\{(a(\zeta)-\bar{a}(\zeta)) \bar{G}_{n}(\zeta, z)\right\}_{\xi} \\
& \left.+\{(b(\zeta)-\bar{b}(\zeta)) \bar{G}(\zeta, z)\}_{\eta}\right] f(\zeta) d \xi d \gamma^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
t_{n} f(z)= & f(z)+\frac{1}{2 \pi} \iint_{D_{n}}\left[(\bar{c}(\zeta)-c(\zeta)) G_{n}(\zeta, z)\right. \\
& +\left\{(\bar{a}(\zeta)-a(\zeta)) G_{n}(\zeta, z)\right\}_{\xi} \\
& \left.+\left\{(\bar{b}(\zeta)-b(\zeta)) G_{n}(\zeta, z)\right\}_{\eta}\right] f(\zeta) d \xi d \eta .
\end{aligned}
$$

If h is continuous on \bar{D}_{n} and is a solution of $L u=0$ (or $\bar{L} u=d^{*} d u$ $+d u_{\wedge} \bar{\alpha}+u \bar{\beta}=0 ; \bar{\alpha}=-\bar{b} d x+\bar{a} d y, \bar{\beta}=\bar{c} d x d y$) in D_{n}, then $T_{n} h$ (or $t_{n} h$) is continuous on \bar{D}_{n} and satisfies the equation $\bar{L} u=0$ (or $L u=0$) in D_{n} and also $T_{n} h=h$ (or $t_{n} h=h$) on ∂D_{n}. Consequently we obtain

$$
\begin{array}{ll}
\left\|T_{n} h\right\|_{D_{n}}=\|h\|_{D_{n}} & \left(\text { or }\left\|t_{n} h\right\|_{D_{n}}=\|h\|_{D_{n}}\right), \tag{8}\\
t_{n}\left(T_{n} h\right)=h & \left(\text { or } T_{n}\left(t_{n} h\right)=h\right) .
\end{array}
$$

On the other hand, if a uniformly bounded sequence $\left\{f_{n}\right\}$ of continuous function f_{n} in D converges to a function f defined in D uniformly on every compact subset of D, then for each point z in D
(9) $\quad T f(z)=\lim _{n} T_{n} f_{n}(z) \quad$ (or $t f(z)=\lim _{n} t_{n} f_{n}(z)$).

In fact, setting

$$
\begin{aligned}
& a_{n}(z)=\left|T f(z)-T_{n} f(z)\right|, \\
& b_{n}(z)=\left|T_{n} f(z)-f(z)-T_{n} f_{n}(z)+f_{n}(z)\right|,
\end{aligned}
$$

and

$$
c_{n}(z)=\left|f_{n}(z)-f(z)\right|
$$

we have

$$
\lim _{n} a_{n}(z)=0
$$

from (i) of Lemma 2 and

$$
\lim _{n} b_{n}(z)=0
$$

from (ii) of Lemma 2. Thus, using $\lim _{n} c_{n}(z)=0$ and

$$
\left|T f(z)-T_{n} f_{n}(z)\right| \leqq \alpha_{n}(z)+b_{n}(z)+c_{n}(z)
$$

we have (9).
Now take a function u in $B(a, b, c ; D)$ (or $B(\bar{a}, \bar{b}, \bar{c} ; D)$). From (8), the sequence $\left\{T_{n} u\right\}$ (or $\left\{t_{n} u\right\}$) is bounded by $\|u\|$ in the absolute value and $T_{n} u$ (or $t_{n} u$) is a solution of $\bar{L} u=0$ (or $L u=0$). Hence by (9), $T_{n} u$ (or $t_{n} u$) converges uniformly to $T u$ (or $t u$) on each compact subset of D which is a solution of $\vec{L} u=0$ (or $L u=0$).

From (8) we have

$$
\begin{equation*}
t_{n}\left(T_{n} u\right)=u \quad\left(\text { or } T_{n}\left(t_{n} u\right)=u\right) \tag{10}
\end{equation*}
$$

If we apply (9) to (10) with $f_{n}=T_{n} u$, we see

$$
\begin{array}{ll}
t(T u)=u & (\text { or } T(t u)=u) \\
\|t u\| \leqq\|u\| & (\text { or }\|T u\| \leqq\|u\|) .
\end{array}
$$

This shows that T (or t) is a one-to-one mapping of $B(a, b, c ; D$) (or $B(\bar{a}, \bar{b}, \bar{c} ; D)$) onto $B(\bar{a}, \bar{b}, \bar{c} ; D)$ (or $B(a, b, c ; D)$) and that $T=t^{-1}$. It is also obvious that both T and t are isometric. Thus Banach spaces $B(a, b, c ; D)$ and $B(\bar{a}, \bar{b}, \bar{c} ; D)$ are isomorphic. This completes the proof of Theorem 1.

Assume that a part Γ of ∂D consists of a finite number of smooth closed Jordan curves. In this case, we denote by $B^{\Gamma}(a, b, c ; D)$ the subspace of $B(a, b, c ; D)$ consisting of every function in $B(a, b, c ; D)$ which vanishes continuously on Γ. With an obvious modification of the proof of Theorem 1 , we can prove the following

Theorem 1'. Banach spaces $B^{\Gamma}(a, b, c ; D)$ and $B^{\Gamma}(\bar{a}, \bar{b}, \bar{c} ; D)$ are isomorphic.
4. A compact set E of D is said to be (a, b, c)-removable if, for any subdomain \mathfrak{D} of D containing E, any bounded solution u of $L u=0$ on a component \mathfrak{D}_{E} of $\mathfrak{D}-E$ whose boundary contains the boundary of \mathfrak{D} can be continued to a solution of $L u=0$ on \mathfrak{D}. In this definition we may assume without loss of generality that the boundary $\partial \mathfrak{D}$ of \mathfrak{D} consists of a finite number of smooth closed Jordan curves. As an application of our comparison theorem we prove

Theorem 2. Let (a, b, c) be any admissible triple. Then a compact set of D is (a, b, c)-removable if and only if the logarithmic capacity of E equals zero.

Proof. Let (a, b, c) and ($\bar{a}, \bar{b}, \bar{c}$) be any two admissible triples in D. Assume that E is (a, b, c)-removable. Let v be an arbitrary element in $B\left(\bar{a}, \bar{b}, \bar{c} ; \mathfrak{D}_{E}\right)$. We may assume without loss of generality that v is continuous on $\partial \mathfrak{D} \smile \mathfrak{D}_{E}$. Let v^{\prime} be continuous on \bar{D} and $v^{\prime}=v$ on $\partial \mathfrak{D}$ and $\bar{L} v^{\prime}=0$ in \mathfrak{D}. Putting $v^{\prime \prime}=v^{\prime}-v$, we see that $v^{\prime \prime}$ is in $B^{\circ D}\left(\bar{a}, \bar{b}, \bar{c} ; \mathfrak{D}_{E}\right)$. On the other hand, by the maximum principle and by Theorem 1^{\prime}, we have

$$
B^{\partial D}\left(a, b, c ; \mathfrak{D}_{E}\right)=B^{2 D}\left(\bar{a}, \bar{b}, \bar{c} ; \mathfrak{D}_{E}\right)=\{0\} .
$$

Hence $v^{\prime \prime}=0$ or $v^{\prime}=v$ on \mathfrak{D}_{E}. Thus E is $(\bar{a}, \bar{b}, \bar{c})$-removable. By the same method, we easily see that if E is ($\bar{a}, \bar{b}, \bar{c}$)-removable, then E is (a, b, c)-removable.

Taking $(\bar{a}, \bar{b}, \bar{c})=(0,0,0)$ and noticing that ($0,0,0$)-removable set is nothing but a set of logarithmic capacity zero, we can assure our Theorem.

The sufficiency of this theorem was proved by Inoue [2]. In the case of pairs ($0,0, c$), this theorem was proved by Nakai [5] and Ozawa [6].

References

[1] A. Douglis and L. Nirenberg: Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8, 503-538 (1955).
[2] M. Inoue: Positively infinite singularities of solutions of linear elliptic partial differential equations, Jour. Osaka City Univ., 8, 43-50 (1957).
[3] L. Lichtenstein: Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Unendliche Folgen positiver Lösungen, Rend. Circ. Mat. Palermo, 33, 201-211 (1912).
[4] L. Lichtenstein: Randwertaufgaben der Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. I, Crelles Jour., 142, 1-40 (1913).
[5] M. Nakai: The space of bounded solutions of the equation $\Delta u=p u$ on a Riemann surface, Proc. Japan Acad., 36, 267-272 (1960).
[6] M. Ozawa: A set of capacity zero and the equation $\Delta u=P u$, Kôdai Math. Sem. Rep., 12, 76-81 (1960).

[^0]: 1) Functions considered in this note are all assumed to be real-valued.
 2) The author extends his hearty thanks to Mr. Nakai for his kind suggestions.
