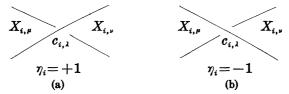
54. On the Definition of the Knot Matrix

By Kunio MURASUGI Hosei University, Tokyo (Comm. by K. KUNUGI, M.J.A., April 12, 1961)

The knot matrix defined in [3] for alternating knots can be defined for any knots or links. To do this, we introduce three indices η , d, ε for each crossing point.¹⁾

Let a regular projection K in S^2 of a knot k have m of the second kind of the loops which divides S^2 into m+1 domains, E_1, E_2, \dots, E_{m+1} . Let us denote $(E_i \cup \dot{E}_i) \subset K = K_i$. Then the regions contained in E_i can be classified into two classes, black and white (cf. Lemma 1.10 [3]). For the sake of brevity, any crossing point in K_i is denoted by $c_{i,\lambda}$, any white region in E_i is denoted by $X_{i,\mu}$ and w_i denotes the number of the white regions in E_i .

[Definition 1] For any $c_{i,2}$, the first index η_i is defined as +1 or -1 as is shown in the following figure.



(It should be noted that the orientation of k is irrelevant to the definition.)

As usual, two corners among four corners meeting at a crossing point are marked with dots [3].

[Definition 2] For any $c_{j,l}$, the second index d is defined as follows.

(1) $d_{x_{i,\mu}}(c_{j,\lambda})=1$ or 0 according as the $c_{j,\lambda}$ -corner of $X_{i,\mu}$ is dotted or undotted.

(2) $dx_{i,\mu}(c_{j,\lambda})=0$ if $c_{j,\lambda}$ does not lie on $X_{i,\mu}$.

If $c_{j,\lambda}$ lies on $X_{j,\mu}$, then the third index $\varepsilon_{X_{j,\mu}}(c_{j,\lambda})$ is defined as +1 or -1 according as the $c_{j,\lambda}$ -corner of $X_{j,\mu}$ is dotted or undotted.

By means of these indices, the knot matrix of K can be defined. [Definition 3] The knot matrix $M = (M_{ij})_{i,j=1,2,...,m+1}$ is defined as follows:

1) For symbols and notations, see [3].

On the Definition of the Knot Matrix

$$(2) \qquad M_{ij} = (b_{rs}^{(ij)})_{r=1,\dots,w_i,s=1,\dots,w_j} \text{ for } i \neq j, \\ -b_{rs}^{(ij)} = \sum_{\substack{c_{j,\lambda \in \dot{X}_i,r \cap \dot{X}_{j,s}}} \eta_i(c_{j,\lambda}) d_{X_{i,r}}(c_{j,\lambda}) \varepsilon_{X_{j,s}}(c_{j,\lambda}).$$

Then using the same notation as is used in [3], we can prove the following

[Theorem 1] Let
$$\Delta(t)$$
 be the A-polynomial. Then
 $\pm t^{\lambda} \Delta(t) = \det \{ \widetilde{M}_{\substack{i_1 i_2 \cdots i_{m+1} \\ i_1 i_2 \cdots i_{m+1} \end{pmatrix}} - t \widetilde{M}_{\substack{i_1 i_2 \cdots i_{m+1} \\ i_1 i_2 \cdots i_{m+1} \end{pmatrix}} \}.$

In general, the knot matrix of a non-alternating knot does not satisfy the following conditions, which are always satisfied for alternating knots,

(1.1) $a_{pp}^{(i)}a_{pq}^{(i)} \leq 0$, $a_{pp}^{(i)}a_{qp}^{(i)} \leq 0$, $|a_{pp}^{(i)}| \geq |a_{pq}^{(i)}|$, for all p, q. However, there are some cases which satisfy (1.1). In such cases their genera are calculated exactly [1, 3]. For example, we have

[Theorem 2] Let $k_{p,q}$ be the parallel knot of type (p,q) whose carrier knot is a special alternating knot.²⁾ Then the genus of k is one half of the degree of its Alexander polynomial. This is especially true for all torus knots.³⁾

References

- R. H. Crowell: Genus of alternating link types, Ann. of Math., 69, 259-275 (1959).
- [2] K. Murasugi: On the Alexander polynomial of the alternating knot, Osaka Math. J., 10, 181-189 (1958).
- [3] —: On alternating knots, Osaka Math. J., 12, 277-303 (1960).

No. 4]

²⁾ $k_{p,q}$ are nonalternating for $p \ge 3$, q arbitrary [2].

³⁾ This was shown by H. Seifert.