298 [Vol. 37,

71. Inverse Images of Closed Mappings. I

By Sitiro HANAI
Osaka University of Liberal Arts and Education
(Comm. by K. KUNUGI, M.J.A., June 12, 1961)

Let f be a closed continuous mapping of a topological space X
onto a topological space Y. It is well known that if Y is paracompact
and f~'(y) is compact for each point y of Y, then X is paracompact
[2,8]. It is interesting to know under what conditions the topologi-
cal properties of Y may be preserved by the inverse mappingf .
H. Tamano [7] has recently obtained the necessary and sufficient
condition that the inverse image space X=f"'(Y) be normal where
X and Y are completely regular 7',-spaces and Y is paracompact.

In this note, we shall investigate the compactness of the inverse
image space X=f"(Y) under the closed continuous mapping f.

In the first place, let us quickly recall some definitions which
were introduced by K. Morita [6]. For any infinite cardinal number
m, a topological space X is said to be m-paracompact if any open
covering of X with power <<m (i.e. consisting of at most m sets)
admits a locally finite open covering as its refinement. A topological
space X is called m-compact if every open covering of power << m has
a finite subcovering.

Theorem 1. If f is a closed continuous mapping of a topological
space X onto an m-paracompact (m-compact) topological space Y such
that the imverse image f '(y) is m-compact for every point y of Y,
then X 1is m-paracompact (m-compact).

Proof. Let U={U,|2e4},|4|<m be an open covering of X where
|4]| denotes the power of 4. And let I" be the family of all finite
subsets 7y of A, then |I'|<m. Since f %(y) is m-compact for every
point y of Y, there exists a finite subset y of 4 such that f '(y)
CvU,. LetV,=Y—f(X— :;UA), then V, is open by the closedness of

2ET
f and yeV, and f"(V,)CZv U,. Therefore B={V,|rel'} is an open
€r
covering of Y with power <m. If Y is m-paracompact (m-compact),
then there exists a locally finite (finite) open refinement {W,|ded} of
B. Since, for each ¢ there exists a 7,¢I" such that f(W,)Cf%(V,,)
c U, {f Y(W,)~U,|d¢ed, Aey;} is a locally finite (finite) open refine-
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ment of U. Thus we get the theorem. From Theorem 1, we have
the following corollaries (see [2, 8, 1]).

Corollary 1.1. If f is a closed continuous mapping of a topo-
logical space X omto a paracompact topological space Y such that
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the inverse tmage f y) is compact for every point y of Y, then X
18 paracompact.

Corollary 1.2. If f is a closed continuous mapping of a topo-
logical space X onto a countably paracompact topological space Y
such that the inverse image f (y) is countably compact for every
point y of Y, then X is countably paracompact.

Corollary 1.3 (J. Dieudonné). If X is a paracompact topological
space and Y is a compact topological space, then the product space
XXY 18 paracompact.

Corollary 1.3 follows from the fact that the projection of XX Y
onto X is a closed continuous mapping.

Theorem 2. Let X be a normal topological space and let Y be
a countably paracompact collectionwise mormal topological space. If
f(X)=Y 1s a closed continuous mapping such that the inverse image
fYy) is compact for every point y of Y, then X is countably para-
compact and collectionwise normal.

Proof. To prove this theorem, we shall use the theorem due to
M. Katétov [4, Theorem 4.1]. Let {X,} be a locally finite collection
of subsets of X, then we can see that {f(X,)} is locally finite in Y.
In fact, let ¥ be any point of Y. Since f'(y) is compact and {X,}
is locally finite, there exists an open set G such that f-(y)CG and
G intersects only a finite number of X,. Then U(y)=Y— f(X—G) is
an open neighborhood of y which intersects only a finite number of
f(X,). Hence {f(X,)} is locally finite in Y. Since Y is countably
paracompact and collectionwise normal, there exists a locally finite
collection of open sets {G,} such that G,DOf(X,) for every a. Hence
we get fY(G,)DX, and {f'(G.)} is a locally finite collection of open
sets. Therefore X is countably paracompact and collectionwise nor-
mal. This completes the proof.

Theorem 3. If X is a topological space such that every point
of X has a meighborhood basts with power <m and Y is an m-
compact topological space, then the projection of the product space
XXY onto X is closed.

Proof. Let f(x,y)=z be the projection of XX Y onto X and let
A be a closed subset of XXY. Let x, be any point of f(A) and
let {U(x,)|Aed},|4|<m be a neighborhood basis of z, then U(x,)
~f(A)x¢4. Hence f '(Uy(x,))~Ax¢ for every ied. On the other
hand, since f*(U(x,))= U(x,) XY, we have (U(x,) X Y)~A+¢, Hence
A[U(x,)]x¢ where A[U(x,)] denotes the set {y|(2’,y)eA for some
z' e U(x,)}. Since {A[U(x,)]|2¢4} has the finite intersection property
in Y and Y is m-compact, we have TA[.U,(xo)]:\:qS. On the other

hand, we can easily see that TA[ U(x,)]=A[x,]. Hence A[z,]5¢.
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Let y, be a point of A[z,], then (x,, y¥,)e¢ A. Hence z,e f(A) that is,
f(A) is closed. This completes the proof.

By Theorems 1 and 3, we can easily verify the following corol-
laries.

Corollary 1.4. If X is an m-paracompact (m-compact) topological
space such that every point of X has a meighborhood basis with
power =<m and Y is an m-compact topological space, then the product
space XX Y is m-paracompact (m-compact).

Corollary 1.5. If X is a countably compact topological space
which satisfies the first countability axiom and Y is a countably
compact topological space, then the product space X XY 1is countably
compact.

Remark 1.1. It was shown by examples that the product space
of two countably compact topological spaces is not always countably
compact [6,8]. The above corollary has some interest as the case
of the product space is countably compact.

Corollary 1.6. If X is a paracompact topological space such
that every point of X has a meighborhood basis with power <m and
Y 4s an m-compact topological space, then the product space XXY
18 m-paracompact.

Theorem 4. Let X be a topological space such that there exists
an F,-set which is not closed and let Y be a topological space. If
the projection of the product space XXY onto X is closed, then Y
18 coumntably compact.

Proof. Let ‘:Ai be not closed where each A, is closed. Let Y
=1

be not countably compact. Then there exists a decreasing sequence
{B} of closed subsets of ¥ such that ~B,—=¢. Let C='(A,xB,),
i=1 =1

then we can see that C is a closed subset of XxXY. In fact, since
{B;} is locally finite in Y, {A,XB;|%1=1,2,---} is locally finite in X
XY. Hence C is a closed subset of XX Y. Now let p be the projec-
tion of XX Y onto X, then p(x, y)=« for every point (z,y) of XX Y.

Then p(C):CAi is not closed. Therefore the projection p is not
i=1

closed. This completes the proof.

Corollary 1.7. Let X be a non-discrete T,-space which satisfies
the first countability axiom and let Y be a topological space. Then
the projection p of the product space XXY onto X 1s closed if and
only if Y is countably compact.

Proof. The “if” part is an immediate consequence of Theorem 3.
We shall show the “only if” part. Since X is a non-discrete 7',-space
which satisfies the first countability axiom, there exist a point =,
and a sequence {x,} of X such that z,—>«,z,% 2z, for n=1,2--- .
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Then the set =z, is not closed and each z, is closed since X is a
n=1

T,-space. Then, by Theorem 4, Y is countably compact. This com-
pletes the proof.

Remark 1.2. H. Tamano [7] stated that if the projection of the
product space XX Y onto X is closed, then Y is pseudocompact pro-
vided that X and Y are completely regular T,-spaces and X is not a
finite set. But his proof has a slight careless error. By use of
Theorem 4, we can establish the following theorem. Let X be a
topological space such that there exists a real valued continuous func-
tion f(x) on X and the set {x| f(x)>0} is not closed and let Y be a
topological space. If the projection of the product space XXY onto
X 1s closed, then Y 1is countably compact.

In fact, let Aiz{x|l,gf(x)g—,——1—}, then :Ai is not closed

7 141 i=1
and each A, is closed. Hence, by Theorem 4, Y is countably compact.
So that Theorem 4 is better than his attempt, since the pseudocom-
pactness follows from the countable compactness.
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