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100. On Some Measure-Theoretic Results in Curve Geometry
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Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1961)

1. Preliminary remarks. Let R™ be a Euclidean space of any
dimension m =1, where we identify R' with the real line R. By a
curve (in R™) we shall understand any mapping of R into R™. Thus
a curve is no other than a real function when m=1. The letter ¢
will be reserved for a given curve throughout what follows. Let us
add that all the sets (and intervals) considered will be situated in
R unless stated otherwise or another meaning is obvious from the
context. For each set E we define the length and the measure-length
of pon E as in [1]8837 and in [2]84 respectively. The former will
be denoted by L(g; E) as before, but the latter by L,(¢; E) in this
note.

As a matter of fact, the measure-length L,(¢; E) depends not
only on the behaviour of ¢ within the set E but also on its defini-
tion for the points outside E, even the case where ¢ is continuous
being no exception to this observation. So long as we are concerned
with locally rectifiable curves, however, this does not cause any
serious obstacle to the construction of a reasonable theory of measure-
length. It is when we step forward beyond such curves that things
begin to show themselves unfavourable to us. One way of avoiding
the difficulty that thus arises is to abandon the study of the measure-
length by itself and to direct our chief interest to certain other
set-functions (to be defined in §2) which serve as substitutes for the
measure-length and whose values for any set E depend solely on
the behaviour of the curve within £. Some of their fundamental
properties will constitute the subject matter of the present note.

2. Reduced and Hausdorff measure-lengths of a curve. Given
a set E, let us consider an arbitrary sequence (finite or infinite) of
its subsets, 4=(FE,, E,,---), such that [4]=FE,~E,—-.--=FE. The
infimum, for all 4, of the sum L(¢; 4)=L(p; E\)+ L(p; Ey)+ - -+ will
be termed reduced measure-length of the curve ¢ over the set E
and denoted by the symbol Z(¢; ). Let us now write 4. for 4
when especially every E, has its diameter d(E,) smaller than a posi-
tive number ¢, the diameter of the void set being understood to be
zero. Consider the images ¢[ E,] of the sets Z, under the mapping
¢ and denote by I'((¢; E) the infimum, for all 4., of the sum
d(e[E )+ d(¢[E.])++--. When -0, this infimum plainly tends in
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a non-decreasing manner to a definite limit, which will be written
I'(p; E) and termed Hausdorff measure-length of the curve ¢ over
E. We observe that both E(p; E) and I'(¢; E), qua functions of E,
are outer Carathéodory measures which wvanish for countable sets.
The proof is immediate and left to the reader; in fact, we need only
notice that if (I, I,,---) is a disjoint sequence of intervals of any
type, then the inequality L(¢; E)=L(p; I, E)+ L(p; ,E)+ - - - holds for
each set E.

ExAMPLE. Let f(f) be 0 or 1 according as ¢t is rational or
irrational. Then both Z(f; E) and I'(f; E) clearly vanish identically
and are therefore different from L.(f; E), the latter being +
whenever E is nonvoid.

LEMMA. We have I'(p; E)<E(p; E)<L,(p; E) for any set E.

PprooF. It is obvious that I'e(¢; E)<5(¢; E) for each ¢>0. In-
deed the right-hand side is equal to the infimum of L(p; 4e) for all
4. considered above, where we find at once L(p; 4¢)=I"e(¢; E). Since
T'e(p; E)—>T'(p; E) as e—>0, the inequality I'(p; E)<E(p; E) follows
readily.

In order to derive further Z(p; E)<L,(p; E), suppose E nonvoid
and consider any sequence ©=<I,, I,,- - - ) of endless intervals covering
E. Then, by definition, L,(¢; £) is the infimum of L(p;6) for all
such O (see [2]84). On the other hand, writing 6FE={I,E, LE,---)
for short and recalling the definition of £(¢; E), we have the evident
relation Z(p; E)<L(p; OE)<L(p; 6). This completes the proof.

3. Continuous functions of locally bounded variation. By a
function, by itself, we shall always mean one defined on R and
assuming finite real values. With each function F of locally bounded
variation, that is to say, of bounded variation on closed intervals,
we can, by a well-known standard procedure, associate a set-function
F'* which is defined for all sets and additive for bounded Borel sets
(see Saks [4], p. 64). We require now the following

LEMMA. If two continuous functions F and G of locally bounded
variaton coincide on a bounded set E, we have F*(E)=G*(E).

PrROOF. Let us suppose firstly that £ is a Borel set. In view
of part (iii) of Theorem (6.6) on p. 69 of Saks [4], we may further
assume E a closed set. We need only treat the case in which E is
non-degenerate, i.e. contains at least two points. Consider the closed
interval I,=[inf E, sup E]. Then F*(I,)=F(I,)=G(I,)=G*(I,) by the
relation (6.4) on p. 68 of Saks [4] and by hypothesis, and this proves
the assertion when E=I, in particular. Suppose therefore E--1I,
and let I denote any open interval disjoint from E and with end-
points belonging to E. We then find, again using (6.4) just quoted,

that F'*(I)=F(I)=G(I)=G*(I), the bar indicating the closure opera-
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tion. On the other hand the additivity of F'* implies that F'*(I,)
=F*(E)+3>] F*(I), where the summation extends over all I. The last
equality, coupled with its counterpart for G*, leads at once to
F*(E)=G*(E) on account of what we have already proved.

We now pass on to the case of general E. According to Theorem
(6.7) given on p. 70 of Saks [4] there is a Borel set A subject to
the three conditions ECACE, F*(A)=F*(E), and G*(4)=G*(E).
Clearly F and G must then coincide on A. Since A is moreover
bounded, the assertion follows readily from what has been established
in the above.

4. Locally rectifiable curves. Needless to say, a curve is termed
locally rectifiable iff (i.e. if and only if) it is rectifiable on all closed
intervals.

LEMMA. If &(t) and 7(t) are a pair of locally rectifiable con-
tinuous curves situated in R", then L,(& E)=L,(y; E) for any set
E on which the two curves coincide.

Proor. If we write s(I)=L(¢; I) for closed intervals I, then
s*(X)=L,(& X) for every set X as remarked in [2]§4; and a similar
result holds of course for the curve 7 also. In view of this it
follows from Theorem (6.7) on p. 70 of Saks [4] that there is a
Borel set A fulfilling the conditions ECACE, L,(& A)=L,( E),
and L,(y; A)=L,(y; £). Plainly £ and » then coincide on A. We
thus find that £ may be assumed a bounded Borel set from now on.

Let F(t) and G,(t) denote the 7-th coordinate-functions of & and
7 respectively (1=1,2,---,m). We established in our recent paper
[3] certain results on the area of interval-surfaces and on the area-
measure of set-surfaces. According to the theorem of §57 of that
paper, the measure-length L,(&; E) equals the length-measure (sic!)
of the set-curve {F'¥,---, F'}> over E and a similar statement may
be made for L.(y; E) as well. But we must have F}(X)=G}(X) for
each i=1,---, m whenever XC_FE, on account of the lemma of the
foregoing section. So that the two set-curves (F'¥,---,F%) and
{(G¥,---,G}> coincide identically within the set E. Collecting the
above results, the desired equality L,(¢; £)=L,(y; E) follows at once.

THEOREM. We have E(p; E)=L,(p; E)<L(p; ) whenever ¢ is
locally rectifiable and continuous at all points of E.

PROOF. The first half our relation is an immediate consequence
of the second half. For let us express E in any manner as the join
of a sequence 4=(E,, E,,---> of its subsets. Then, since we may
clearly replace E by E,, E.,--- in the inequality L.(¢; E)<L(p; E),
we must have L,(¢; E)<L,(p; )<L(p; 4). By definition of reduced
measure-length this implies that L,(¢; E)<E5(p; E), which combined
with the lemma of §2 shows that L,(¢; E)=5(¢; E).
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In order to prove L,(¢; E)<L(p; ), we shall begin with the
case in which ¢ is a continuous curve. Then we may clearly assume
E to be a non-degenerate closed set not coinciding with R. We now
construct from ¢ another curve Y as follows. Let us put ¥ (t)=¢(t)
whenever te E. To define Y¥(f) for the remaining points, let I be
any connected component of the nonvoid open set R— FE, so that [
is an endless interval. We then extend the definition of Y(¢) to the
whole real line so as to make () linear on the closure of each
interval I. We observe that the definition of ¥ on I is unique when
I is bounded, since the extremities of I must then belong to E. If,
on the other hand, I is unbounded, then v is not uniquely determined
on I. But this does not matter at all to our purpose.

It is easily seen that the curve Y, thus constructed, is continu-
ous and locally rectifiable. Since so is also ¢ by hypothesis, we
deduce from the above lemma that L,(yp; E)=L,(¥; E). Let now M
be the smallest interval containing E, so that L,(V; E)<L,(V¥; M).
We then find without difficulty L(y; E)=L(¥; M)=L,(¥; M). On the
other hand L(p; E)=L(¥; E) by construction of Y. Collecting the
above results, we obtain at once L,(¢; £)<L(¢; E), Q.E.D.

It remains to establish the same inequality without assuming
the continuity of ¢. For this purpose let H denote the set of the
points of R at which ¢(f) is discontinuous. Then H is countable
since ¢ is locally rectifiable. In virtue of [1]§94 there is therefore
a non-decreasing continuous function p(u) mapping R onto itself and
such that the inverse image p !(f) of a point te R under p is non-
degenerate and hence a closed interval (called interval of constanecy
of p), iff ¢t belongs to H. For each point ¢ of R let us now define
q(t) to be the point p~'(¢) when te R—H and to be the middle point
of the interval p '(t) when teH. Thus defined, q(¢) is obviously a
strictly increasing function.

This being so, we construct further a curve w(u) as follows.
For the points ueq[R], we put simply w(u)=¢(p(uw)). To determine
o(u) for the remaining values of u, let »p~'(t,)=[a, b] be any interval
of constancy of p, with ¢ for its middle point. Putting e(a)=¢(t,—),
o(b)=¢(t,+) and noting that w(c) is already defined to be ¢(t,), we
complete the definition of w(u) on [a,b] by requiring it to be linear
on both [a,c] and [¢,b]. We then see without difficulty that o,
thus defined on the real line, is a locally rectifiable continuous curve
such that L(g; [t,, t.]1)= L(w; [q(t,), q(t:)]) whenever t,<t,.

The last relation enables us to choose length-functions s(t) and
a(u) for the curves ¢(t) and w(u) respectively in such a manner that
s[X]=e[q[X]] for every set X. Since s(f) is continuous at all
points of E together with ¢(t) and since o(u) is everywhere continu-
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ous together with w(u), it follows at once by Theorem (13.3) on p. 100
of Saks [4] that, if we write N=¢q[E] for the set £ of the asser-
tion, then

L.(¢p; E)=s*(E)=|s[E] |=|6[N]|=0*(N)=Ly(w; N).

On the other hand ¢(tf)=w(q(t)) for every ¢t by construction of
o, where ¢(t) is strictly increasing as already mentioned. This gives
at once L(w; N)=L(p; E). But, since o is locally rectifiable and
continuous, it follows from what we have established in the above
that L,(w; N)<L(w; N). We thus derive L,(w; N)=<L{(y; E), which,
in combination with L,(y; £)=L.(w; N) proved already, leads finally
to L,(p; E)<L(p; E). This completes the proof.

5. Intervals on which a curve is continuous. A curve ¢ will
be said continuous on a set E iff either E is void, or else E is
nonvoid and the subcurve (¢; ), i.e. the restriction of ¢ to E, is
continuous (see Saks [4], p.42, where a similar notion is defined for
a function). This must not be confused with the continuity of ¢
at all points of the set .

LEMMA. If ¢ is continuous on a given interval I (of any type)
and if we express I as the join of a sequence d=<{E,, E,,---) of ils
subsets, then d(e[I])=<d(¢[E,])+d(¢[E:])+---.

PROOF. Continuity of ¢ on I allows us to assume I an endless
interval. To simplify our notations, let us write O(X)=d(¢[X])
for each set X. Suppose 4 infinite and @(J4) finite, as we plainly
may, and consider an arbitrary positive number e¢. It is easy to
choose in I an infinite sequence 4*=<{D,, D,,---)> of open sets so as
to satisfy the conditions D,DE, and &(D,)<®(E,)+2 "¢ for every
n=1,2,---. The last inequality, when summed over all n, gives us
D(4*)<D(d)+¢, and consequently the assertion will be established if
we show @(I)<@(4*). But this is an immediate consequence of the
following lemma.

LEMMA. Suppose that an endless imterval I is covered by a
Sfamily M of monvoid open sets situated in I. By a chain (in M)
we shall understand for the moment any finite sequence M,,---, M,
consisting of distinct sets (M) and such that, when n=>1, every
neighbouring pair of elements of the sequence has monvoid intersec-
tion. Such a chain will be said to connect M, and M, (or M, to M,).
We now assert that each pair of sets (M) can be connected by a chain.

PROOF. Let A be any fixed set (M) and let M, be the subfamily
of M consisting of all the sets (M) which can be connected to A by
chains, so that AeM,. We shall show that I, coincides with In.
For this purpose, suppose on the contrary that M,=M—IM, were
nonvoid. Then each set (M,) must plainly be disjoint from all the
sets (M,), and so the join of the family I, does not intersect that
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of M.. Accordingly the interval I is partitioned into a pair of non-
void open sets. This contradicts the connectedness of I and completes
the proof.

THEOREM. We have I'(p; I)=5(p; I)=L(¢; I) for each interval
I on which ¢ is continuous.

PrOOF. Without ambiguity we shall write I'(X)=1I"(¢p; X), ete.
for each set X. It follows from the lemma of §2 and the definition
of reduced measure-length that I'(I)<E()<L(I). Accordingly we
need only ascertain the inequality L(I)<I'(I) in the sequel. For this
purpose, let 4 be any disjoint sequence of intervals contained in I.
It plainly suffices to derive @(4)<I'(I), where ®(X) abbreviates
d(¢[X]) as before for each set X. For each interval J composing
4, the first lemma of this section gives @(J)<I'(J) by definition of
I'(J). Summing the last inequality over all J, we get at once @(4)
<I'(d)<r(I), which completes the proof.

THEOREM. If I is an interval on which ¢ 1is both continuous
and rectifiable, then I'(®; E)=E5(¢; E) for every Borel set EC I

OUTLINED PROOF. Let us denote by 9t the class of all the Borel
sets X contained in I and satisfying the equality I'(¢; X)=25(¢; X).
Then every subinterval of I belongs to :t on account of the foregoing
theorem. But it is not difficult to verify that % is an additive class.
Hence N must coincide with the Borel class in I, and the proof is
complete.
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