128. On Certain Reduction Theorems for Systems of Differential Equations which Contain a Turning Point

By Kenjiro Okubo
Department of Mathematics, Tokyo Metropolitan University
(Comm. by K. Kunugi, m.J.A., Nov. 13, 1961)

1. Introductions. In this paper we consider a system of linear ordinary differential equations

$$
\begin{equation*}
\varepsilon d x / d t=A(t, \varepsilon) x \tag{1.1}
\end{equation*}
$$

where x is an n-vector: $A(t, \varepsilon)$ is a matrix of type (n, n), which admits a uniformly asymptotic expansion

$$
\begin{equation*}
A(t, \varepsilon)=\sum_{j=0}^{\infty} A_{j}(t) \varepsilon^{j} \tag{1.2}
\end{equation*}
$$

for $|t|<t_{0}$, as ε tends to zero through a domain $|\arg \varepsilon-\theta|<\varepsilon_{0}$. The coefficients of this expansion, $A_{j}(t)$ are holomorphic functions of t in the domain $|t|<t_{0}$.

The system has a turning point at the origin, if $A_{0}(t)$ has a set of eigenvalues: $\lambda_{j_{1}}(t), \cdots, \lambda_{j_{p}}(t)(p \leq n)$, which are zero for $t=0$, but at least a pair of eigenvalues are not identically equal, where, by a theorem due to Sibuya, (cf. Sibuya, Y. [3]), we may assume $p=n$.

Though a general method to treat such a system is not yet known, all the known results are obtained by reducing the coefficient matrix $A(t, \varepsilon)$ to a matrix, whose elements are polynomials in the independent variable. Moreover, if there is a formal transformation

$$
\begin{equation*}
y=P(t, \varepsilon) x \quad P(t, \varepsilon) \sim \sum_{j=0}^{\infty} P_{j}(t) \varepsilon^{j} \tag{1.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\operatorname{det} P_{0}(0) \neq 0, \quad P_{j}(t): \text { holomorphic for }|t|<t_{0} \tag{1.4}
\end{equation*}
$$

which reduces the system (1.1) to a system with polynomial coefficients, then, in a sectorial domain, there is a matrix $Q(t, \varepsilon)$ which has the same asymptotic expansion as $P(t, \varepsilon)$. (cf. Sibuya, Y. [4]). We shall call a formal transformation (1.3) with the properties (1.4), a formal admissible transformation.

Our results are stated in two theorems:
Theorem 1. If in (1.2) $A_{0}(t)$ is in the form

$$
A_{0}(t)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{1.5.1}\\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \\
0 & 0 & 0 & \cdots & 1 \\
t & 0 & 0 & \cdots & 0
\end{array}\right),
$$

then there is a formal admissible series (1.3) such that

$$
\varepsilon d y / d t=A_{0}(t) y
$$

Theorem 2. If in (1.2) $A_{0}(t)$ is in the form

$$
A_{0}(t)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{1.5.2}\\
0 & 0 & 1 & \cdots & 0 \\
& \cdots & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
0 & t & 0 & \cdots & 0
\end{array}\right),
$$

then there is a formal admissible transformation (1.3) such that

$$
\varepsilon d y / d t=B(t, \varepsilon) y
$$

where

$$
B(t, \varepsilon)=A_{0}(t)+\varepsilon \sigma\left(\begin{array}{ccc}
0 & 0 & \cdots
\end{array}\right)
$$

σ is a formal power series of ε with constant coefficients

$$
\begin{equation*}
\sigma \sim \sum_{k=0}^{\infty} \sigma_{k} \varepsilon^{k} \tag{1.6}
\end{equation*}
$$

Remark. Those theorems can be applied when, in (1.5.1) and (1.5.2), t is replaced by an holomorphic function $\varphi(t)$ such that

$$
\varphi(0)=0, \text { and } \varphi^{\prime}(0) \neq 0 .
$$

The system (1.1) with $A_{0}(t)$ in the form (1.5.1), contains the second order equation treated in Langer, R. E. [1], and with $A_{0}(t)$ in the form (1.5.2), contains the third order equation treated in Langer, R.E. [2] in its special cases.
2. Angorithms. We shall use the following lemma.

Lemma. Let $\mu(t, \varepsilon)$ be a row-vector with n components, using the matrix $A(t, \varepsilon)$ in (1.2), and define a set of row vectors $p_{k}(t, \varepsilon), k$ $=1,2, \cdots, n+1$, as follows

$$
\left\{\begin{array}{l}
p_{1}(t, \varepsilon)=\mu(t, \varepsilon) \tag{2.1}\\
p_{k}(t, \varepsilon)=\varepsilon d p_{k-1} / d t+p_{k-1}(t, \varepsilon) A(t, \varepsilon) \quad(2 \leq k)
\end{array}\right.
$$

then

$$
\begin{equation*}
p_{k+1}=\mu A_{0}^{k}+\varepsilon\left(k \mu^{\prime} A_{0}^{k-1}+\mu \psi_{k}\left(A_{0}\right)\right)+\varepsilon^{2} f_{k}(t, \mu, \varepsilon) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{k}\left(A_{0}\right)=\sum_{j=1}^{k-1}\left(\left(A_{0}^{j}\right)^{\prime} A_{0}^{k-j-1}+A_{0}^{j} A_{1} A_{0}^{k-j-1}\right) \tag{2.3}
\end{equation*}
$$

and $f_{k}(t, \mu, \varepsilon)$ is a linear form in $\mu, \mu^{\prime}, \mu^{\prime \prime}, \cdots, \mu^{(k)}$: the coefficients of this linear form are polynomials in $A, A^{\prime}, \cdots, A^{(k)}$.

Proof. By iteration

$$
\begin{align*}
& p_{2}=\varepsilon \mu^{\prime}+\mu A \\
& p_{3}=\varepsilon^{2} \mu^{\prime \prime}+\varepsilon\left(2 \mu^{\prime} A+\mu A^{\prime}\right)+\mu A^{2} \\
& \cdots \cdots \\
& p_{k+1}=\mu A^{k}+\varepsilon\left(k \mu^{\prime} A^{k-1}+\mu_{j=1}^{k-1}\left(A^{j}\right)^{\prime} A^{k-j-1}\right)+\varepsilon^{2}(\cdots)+\cdots+\varepsilon^{k} \mu^{(k)} . \tag{2.4}
\end{align*}
$$

Substituting the expression (1.2) into (2.4) we have the lemma.
We shall consider a transformation $y=P x$ which carries the system (1.1) to a system

$$
\begin{equation*}
\varepsilon d y / d t=B(t, \varepsilon) y \tag{2.5}
\end{equation*}
$$

where P is a matrix whose row-vectors are $p_{1}, p_{2}, \cdots, p_{n}$; namely

$$
P(t, \varepsilon)=\left(\begin{array}{c}
p_{1}(t, \varepsilon) \tag{2.6}\\
p_{2}(t, \varepsilon) \\
\cdots \\
\cdots \\
p_{n}(t, \varepsilon)
\end{array}\right)
$$

By the expression

$$
\varepsilon d y / d t=\left(\varepsilon P^{\prime}+P A\right) P^{-1} y=\left(\begin{array}{c}
p_{2}(t, \varepsilon) \\
p_{3}(t, \varepsilon) \\
\ldots . \\
p_{n+1}(t, \varepsilon)
\end{array}\right) P^{-1}(t, \varepsilon) y
$$

$B(t, \varepsilon)$, is necessarily of the form

$$
B(t, \varepsilon)=\left(\begin{array}{cccc}
0 & 1 & 0 & \cdots \tag{2.7}\\
0 & 0 & 1 & \cdots \\
0 & 0 & 0 \\
0 & 0 & \cdots & 0 \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right) .
$$

So in order to find a matrix $P(t, \varepsilon)$, such that (2.5) holds for arbitrarily given set ($b_{1}, b_{2}, \cdots, b_{n}$), it is sufficient to find a vector μ, such that

$$
\begin{equation*}
p_{n+1}=\sum_{k=1}^{n} b_{k} p_{k} \tag{2.8}
\end{equation*}
$$

3. Proof of Theorem 1. Set $b_{1}=t, b_{k}=0$ for $k=2,3, \cdots, n$ in (2.8), and using the lemma,

$$
\begin{equation*}
\mu A_{0}^{n}+\varepsilon\left(n \mu^{\prime} A_{0}+\mu \psi_{n}\left(A_{0}\right)\right)+\varepsilon^{2} f_{n}(t, \mu, \varepsilon)=t \mu . \tag{3.1}
\end{equation*}
$$

Subtracting $\mu A_{0}^{n}=t \mu$ (Cayley-Hamilton theorem) and multiplying A_{0} from the right,

$$
\begin{equation*}
n t \mu^{\prime}+\mu \psi_{n}\left(A_{0}\right) A_{0}+\varepsilon f_{n}(t, \mu, \varepsilon) A_{0}=0 \tag{3.2}
\end{equation*}
$$

Substituting the formal expression

$$
\begin{equation*}
\mu(t, \varepsilon) \sim \sum_{j=1}^{\infty} \mu_{j}(t) \varepsilon^{j} \tag{3.3}
\end{equation*}
$$

we have an infinite sequence of systems of differential equations

$$
\begin{gather*}
t \mu_{0}^{\prime}=\mu_{0} G(t) \tag{3.4.0}\\
t \mu_{k}^{\prime}=\mu_{k} G(t)+g_{k}(t, \mu) \quad k=0,1,2, \cdots \tag{3.4.k}
\end{gather*}
$$

where $G(t)=-1 / n \cdot \psi_{n}\left(A_{0}\right) A_{0}$, and $g_{k}(t, \mu)$ is a linear form in μ_{0}, μ_{1}, \cdots, μ_{k-1} and their derivatives.

Each system has a regular singular point at the origin, and the eigenvalues of $G(0)$ are calculated from the equality

$$
A_{0}^{k}=\left(\begin{array}{cc}
0 & E_{n-k} \\
t E_{k} & 0
\end{array}\right)
$$

where E_{n-k} is a unit matrix of order $n-k$. If we set $A_{1}(t)=\left(\begin{array}{ll}Q & R \\ S & T\end{array}\right)$, where Q, R, S and T are matrices of type $(k, k),(k, n-k),(n-k, k)$ and ($n-k, n-k$) respectively:

$$
A_{0}^{k} A_{1} A_{0}^{n-k}=\left(\begin{array}{cc}
0 & E_{n-k} \\
t E_{k} & 0
\end{array}\right)\left(\begin{array}{cc}
Q & R \\
S & T
\end{array}\right)\left(\begin{array}{cc}
0 & E_{k} \\
t E_{n-k} & 0
\end{array}\right)=\left(\begin{array}{cc}
t T & S \\
t^{2} R & t Q
\end{array}\right)
$$

We see that this matrix has diagonal elements all zero. On the other hand

$$
\left(A_{0}^{k}\right)^{\prime} A_{0}^{n-k}=\left(\begin{array}{cc}
0 & 0 \\
E_{k} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & E_{k} \\
t E_{n-k} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & E_{k}
\end{array}\right)
$$

so that $G(0)=-1 / n \cdot \sum_{k=1}^{n-1}\left(A_{0}^{k} A_{1} A_{0}^{n-k}+\left(A_{0}^{k}\right)^{\prime} A_{0}^{n-k}\right)_{t=0}$ is a triangular matrix with diagonal elements,

$$
\begin{equation*}
0,-1 /, n, \cdots,-2 / n, \cdots,-(n-1) / n \tag{3.5}
\end{equation*}
$$

and these are the eigenvalues of $G(0)$.
Since there is 0 among the eigenvalues, and $(1,0, \cdots, 0)$ is a corresponding eigenvector of $G(0)$, there is an holomorphic solution with the initial condition ($1,0, \cdots, 0$) of the system (3.4.0), moreover this choice of the initial condition enables us to satisfy $\operatorname{det} P_{0}(0) \neq 0$.
If we suppose that we have found $\mu_{0}(t), \mu_{1}(t), \cdots, \mu_{k-1}(t)$, which are holomorphic at the origin, then we can find a solution of (3.4.k) which is holomorphic at the origin, for $g_{k}(t, \mu)$ is a row vector with components holomorphic functions at the origin, and the first component of $g_{k}(t, \mu) A_{0}$ is zero at $t=0$. This completes the proof of Theorem 1.
4. Proof of Theorem 2. We put $b_{1}=\varepsilon \sigma, b_{2}=t$ in (2.8) with an undetermined formal series (1.6) and using Lemma

$$
\mu t A_{0}+\varepsilon\left(n \mu^{\prime} A_{0}^{n-1}+\mu \psi_{n}\left(A_{0}\right)\right)+\varepsilon^{2} f_{n}(t, \mu, \varepsilon)=\varepsilon \sigma \mu+\varepsilon t \mu^{\prime}+\mu t A .
$$

Subtracting $\mu t A_{0}$ from both sides,

$$
\begin{equation*}
\mu^{\prime}\left(n A_{0}^{n-1}-t\right)=-\mu\left(\psi_{n}\left(A_{0}\right)-\sigma-t A_{1}\right)+\varepsilon\left(-f_{n}+\mu t \sum_{2}^{\infty} A_{k} \varepsilon^{k}\right) \tag{4.1}
\end{equation*}
$$

The calculation of $\psi_{n}\left(A_{0}\right)$ follows from the expression

$$
\left.\left.\left.\left.A_{0}^{k}=\left(\begin{array}{cc}
0 & E_{n-k} \\
0 & 0
\end{array}\right)+\left(\begin{array}{c|c|c}
0 & & \\
0 & 0 & 0 \\
0 & 0 & \\
\cdots & & \\
\hline 0 & & \\
\cdot & t E_{k} & 0
\end{array}\right)\right\} \begin{array}{l}
k(n-k-1)
\end{array}\right)\right\} \begin{array}{l}
\\
0
\end{array}\right)
$$

We have

$$
\begin{aligned}
& \left(A_{0}^{k}\right)^{\prime} A_{0}^{n-k-1}=\left(\begin{array}{cc}
0 & 0 \\
0 & E_{k}
\end{array}\right), \\
& \left.A_{0}^{k} A_{1} A_{0}^{n-k-1}\right)_{t=0}=\left(\begin{array}{cc}
0 & E_{n-k} \\
0 & 0
\end{array}\right) A_{1}(0)\left(\begin{array}{cc}
0 & E_{k+1} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & A_{k}^{*} \\
0 & 0
\end{array}\right),
\end{aligned}
$$

where

$$
A_{k}^{*}=\binom{a_{k+1,1} \cdots a_{k+1, k+1}}{\cdots a_{n, k+1}},
$$

[Vol. 37,
when (j, k) element of $A_{1}(0)$ is denoted by $a_{j k}$. So, at the turning point $t=0, \psi_{n}\left(A_{0}\right)$ is a triangular matrix, i. e., all the elements below the main diagonal are zero. And the diagonal elements are accordingly eigenvalues of $\psi_{n}\left(A_{0}\right)$ at the origin, they are

$$
\left(a_{n, 1}, a_{n, 1}+1, \cdots, a_{n, 1}+(n-1)\right)
$$

The coefficient matrix on the left-hand side of (4.1) is

$$
H=\left(\begin{array}{cccc}
-t & 0 & \cdots \cdots & n \\
0 & (n-1) t & & 0 \\
0 & 0 & (n-1) t & \\
0 & 0 & \cdots \cdots \cdots & (n-1) t
\end{array}\right)
$$

As in the proof of Theorem 1, we substitute

$$
\mu(t, \varepsilon) \sim \sum_{j=0}^{\infty} \mu_{j}(t) \varepsilon^{j}
$$

into (4.1) to have an infinite sequence of systems of differential equations,

$$
\begin{align*}
& \mu_{0}^{\prime} H(t)=\mu_{0} G(t) \tag{4.2.0}\\
& \mu_{k}^{\prime} H(t)=\mu_{k} G(t)+\sigma_{k} \mu_{0}+g_{k}(t, u), \tag{4.2.k}
\end{align*}
$$

where

$$
\begin{equation*}
G(t)=\sigma_{0} E-\psi_{n}\left(A_{0}\right)+t A_{1} \tag{4.3}
\end{equation*}
$$

and σ_{k} is the constant defined in (1.9); the vector $g_{k}(t, \mu)$ depends linearly on $\mu_{0}, \cdots \mu_{k-1}$ and their derivatives. Eigenvalues of $G(0)$ are

$$
\sigma_{0}-a_{n, 1}-(k-1) \quad k=1,2, \cdots, n .
$$

Let us define

$$
\begin{equation*}
\sigma_{0}=a_{n, 1} . \tag{4.4}
\end{equation*}
$$

Then multiplying the matrix

$$
\left(\begin{array}{cccc}
-1 & 0 & \cdots & n /(n-1) t \\
0 & 1 /(n-1) & \cdots & 0 \\
& & \cdot & \\
0 & 0 & \cdots & 1 /(n-1)
\end{array}\right)
$$

from the right to (4.2.0.), we can diagonalize this system to (4.2.0)*

$$
\mathrm{t} \mu_{0}^{\prime}=\mu_{0} G^{*}(t)
$$

The eigenvalues of the matrix $G^{*}(0)$ are

$$
0,-1 /(n-1), \cdots,-1
$$

since the ($n, 1$) element of $G(t)$ is identically zero.
Suppose we have obtained a sequence of holomorphic solutions $\mu_{0}(t), \mu_{1}(t), \cdots, \mu_{k-1}(t)$, then in order that the system (4.2.k) has an holomorphic solution, we must determine the constant σ_{k} so that the first component of

$$
\sigma_{k} \mu_{0}+g_{k}(t, \mu)
$$

must be zero for $t=0$. This choice is possible. Indeed $G^{*}(0)$ has 0 as an eigenvalue, and $(1,0, \cdots, 0)$ is the corresponding eigenvector. Consequently, there is a solution such that $\mu_{0}(0)=(1,0,0, \cdots, 0)$. This
completes the proof of Theorem 2.

References

[1] Langer, R. E.,: The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to a turning point, Transaction of the American Mathematical Society, 67 (1949).
[2] -: The solutions of a class of ordinary linear differential equations of the third order in a region containing a multiple turning point, Duke Mathematical Journal, 23 (1956).
[3] Sibuya, Y.: Sur réduction analytique d'un système d'équations differéntielles ordinaires linéarires contenant un paramètre, Journal of the Faculty of Science, University of Tokyo I, 7 (1958).
[4] -: On the problem of turning points, MRC Technical Summary Report, 105, Mathematics Research Center, U.S. Army, University of Wisconsin (1959).
[5] Wasow, W.,: Turning point problems for certain systems of linear differential equations, ibid., 184 (1960).

