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122. Further Measure.Theoretic Results in Cuwe Geometry
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Department of Mathematics, Ochanomizu University, Tokyo

(Comm. by Z. SUETtrrA, M.J.A., NOV. 13, 1961)

1. Extension of a previous result. The final theorem of our
recent note 4 was only given a sketched proof. We shall now
prove it completely, extending it at the same time to the following
form which is slightly more general.

THEOREM. If I is an interval (of any type) on which a curve, situated in R, is both continuous and rectifiable, then ((; E)
=/’(; E)for any subset E of I whatsoever.

PROOF. We may clearly suppose I an endless interval, so that
is continuous at all points of /. Let us denote by the class of

all the Borel sets XI fulfilling the relation (; X)--F(p; X), and
by the class of all convex subsets of /. Each set ()being then
either void, or a one-point set, or an interval, we see as at the end
of [4J that the class contains . As may be readily verified
further, is a primitive class in I (see p. 116 of our paper [1
for the terminology). In other words, satisfies the following
three conditions: (i) the interval I belongs to ; (ii) if Ae and
BegY, then AB; (iii) if Ae, there is a disjoint infinite sequence
z/ of sets () such that I--A--zq_. Consequently, in conformity
with Theorem 1 of 1], the smallest additive class (in I)containing
the class coincides with the smallest normal class containing
(see Saks [7, p. 83, for the terminology). But, taking into account
the rectifiability of o on I, we find easily that 92 is a normal class.
It follows at once that coincides with the Borel class in/, so that
our assertion holds at least whenever E is a Borel subset of I.

Let us turn now to the case of general E. As it will follow
from the lemrna to be soon established below, we can enclose E in
a Borel set EoI such that P(; E)--r(; E0). Since/(; E0)--(p; E0)
by what has already been proved, we obtain F(; E):>((p; E). This,
combined with the lemma of 42, gives finally /(p; E)--5((p; E).

LEMMA. if a curve is continuous at all points of a set E, we
can enclose E in a set H of the class , such that F(; H)--F(; E).

PROOF. We may plainly assume/((p; E) finite. To simplify our
notations, let us write (X)-d(p[X]) for each set X. Given any
natural number n, the set E has an expression as the join of an
infinite sequence J,--(X", X’, of its subsets such that d(X,)<
for i-1, 2,... and (z/)</(; E)+e, where and below we write e=n-
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for convenience. By hypothesis we can associate with ln an infinite
sequence of open sets, n-G, G, , such that for each the
set G contains X, has diameter less than , and fulfils (G)
<(X)+2-. Writing H-- 1][2"" we see at once that H is a
set (G,) containing E. We have further, for each positive integer n,

r,(m; H)_<F,(; [0.])_<m(0.)<O(a.)+e<r(; E)-2e,
where F has the same meaning as in [4]2. Recalling e--n- and
making n--oo, we find in the limit F(; H)__<F(; E). Since the
converse inequality is obvious, this completes the proof.

R.a. The lemma just established may be slightly further
generalized as follows. If A is a nonvoid set containing a set E
and if he subcurve (; A) of is continuous at all points of E, then
E can be enclosed in a set H which is relatively ( with respect to
A and such that F(; H)--F(; E). The above proof remains valid
for this also, provided a few verbal changes are made.

2. Countable rectiability of a curve on a set. We shall call
a curve to be countably ’ectifiable on a set E iff E can be expressed
as the join of a (finite or infinite) sequence of its subsets on each of
which is rectifiable. It is obvious that this is the case when and
only when all the coordinate-functions of are VBG on E, i.e. of
generalized bounded variation on E (vide Saks [7], p. 221).
When especially E coincides with the whole real line, the reference
to the set E will usually be omitted and we shall simply say that

is a counably q,ecifiable curve. This being so, the theorem of the
preceding section admits of the following extension.

THEOREM. If is rectifiable on a set E, then @(; E)=F(; E).
The same conclusion holds also when is countably rectifiable on E,
provided that is continuous on the same set.

PR00. 1) In order to prove the first half of the assertion, we
may suppose without loss of generality that is rectifiable on the
whole line R. For, according to Lemma (4.1) on p. 221 of Saks [7],
each coordinate-function of the curve coincides on E with a func-
tion which is of bounded variation on R. If we now argue as in
the proof for the theorem of [4]4, we can easily construct a strictly
increasing function q(t) and a rectifiable continuous curve o(u), such
that o(q(t))=(t) for every point t eR. This allows us to assume p
both rectifiable and continuous, and the assertion then follows directly
from the theorem of 1.

2) Supposing p continuous on E as well as countably rectifiable
on E, let us express E as the join of an infinite sequence E, E2,--.
of sets on each of which is rectifiable. Then we have the evident

relation L(; EEl)----L(; ’,)< - oo for each n, the bar indicating the
closure operation. Consequently it follows from what has just been
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proved in part 1) that, if we write H--E, and H,, E,,--(E...E,,_)
when nl, then (;EH,)--I-’(;EH,,) for each n--l, 2,..-. On the
other hand, noting that H, H2,... constitute a disjoint sequence of
Borel sets and making use of Theorem (4.6) on p. 46 of Saks [7],
we derive (;E)--(;EH,,), the sum extending over all n,
together with a similar relation for F. The above results, collected
together, lead at once to the required equality and complete the
proof of the theorem.

3. Multiplicity functions. Given a curve (in R) and a set
E, we call multiplicity function determined by and E, and denote
by the symbol N(; x; E), the function defined for each point x of
R to be the number (finite or + o) of the points t of E such that
(t)-x. Sometimes this is also termed multiplicity of x with respect
to p and E. We may write for this simply N(x; E), or more con-
cisely N(x), when there is no fear of ambiguity.

In the present section we shall only consider the case in which
the space R is the real line, so that reduces itself to a function.
It would not be uninteresting, however, to extend to the case of
curves the results that we are going to establish in the sequel; the
paper [5] by NSbeling, which is inaccessible to the author at present,
would probably be useful for that purpose.

We find it convenient to begin with the following lemma which,
in view of the first theorem of [4_ 5, generalizes the proposition
III. 2.25 of Rad5 [6].

LEMMA. If a function f(t) is of bounded variation on a Borel
set E, then the multiplicity function N(f x; E) is summable on R
(in the Lebesgue sense) and we have

(f; E)--F(f E)-f N(f E)

In particular, therefore, the image f[EJ is a measurable set.
PROOF. On account of Lemma (4.1) on p. 221 of Saks [7], the

function f may be assumed VB on the whole R. Then the set Eo
of the points of E at which f is discontinuous must be countable,
and hence the conclusion of the assertion holds if we replace in it
the set E by Eo throughout. On the other hand N(f; x; X), (f; X),
and F(f; X), qua functions of a variable Borel set X, are evidently
additive. Thus we need only consider the case where E is a nonvoid.
Borel set at all points of which f, assumed VB on R, is continuous.
We now argue as in the proof for the theorem of [4]4 and con-
struct a strictly increasing function q(t) and a continuous function
F(u) which is VB on R, in such a manner that F(q(t))--f(t)for
every tR and further that the inverse function q-(u) of q, defined
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for the points u of the set q[R], coincides on the set E*----qE]
with some continuous non-decreasing function p(u) defined on R and
with the property E*-p-[E]. Then E* is plainly a Borel set and
we find moreover
Z(f; E)----(F; E*), /’(f; E)----F(F;E*), N(f;; E)--N(F; x; E*),

the last relation holding for all zR.
On gathering all that has been said in the above, it follows

immediately that we are allowed to confine ourselves to the case
where the function f is VB on R and continuous everywhere. This
being so, let us denote by the class of all the Borel sets E for
which our assertion is true, and by the primitive class consisting
of all convex sets in R. With the combined help of the first theorem
in _45 and of Theorem (6.4) on p. 280 of Saks [7], which is easily
seen to hold even when Io is an interval of arbitrary type, we then
see at once that the class contains . Furthermore it is verified
without difficulty that is a normal class. Accordingly we conclude
as in 1 that must coincide with the Borel class in R. This com-
pletes the proof.

THEOREM. If a function f(t) is continuous on a Borel set E
and at the same time of generalized bounded variation on E, then
the multiplicity function N(f ; E) is neasurable and we have

(f; E)--r(f E)-f N(f ; E) dz.

In consequence, the image f[E must be a measurable set.
PROOF. As in part 2) of the proof for the theorem of 2, we

can decompose E into an infinite sequence of Borel sets B, B,..-
such that L(f; B)<q-oo for n--1,2,.... Then the above lemma
shows that N(x; B) is a measurable function of x for each n and
that the relation of our theorem holds when we replace in it the
set E by B throughout. The function N(z;E), which equals
N(x; B)q-N(z; B)q-..., is therefore measurable also and the asser-
tion follows readily on integrating the last series term-by-term.

4. Saltus. and continuous parts of a locally rectifiable curve.
Let k(I) be an interval-curve situated in R, that is to say, an
m-tuple of additive interval-functions defined for linear closed inter-
vals I and assuming finite real values. If (t) is a curve which
corresponds to k(I) in the sense that (I)--@(I) for each L then
the reduced and Hausdorff measure-lengths of 9 on a set X are
independent of the choice of . For evidently any two copies of
cai only differ by a parallel translation. We are thus entitled to
write (@;X) and F(@;X) for these two quantities and to term
them reduced and Hausdorff neasure-lengths of #, over X respec-
tively. We can further define the length L(@; X) and the neasure-
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length L.(@; X) similarly.
In our recent work [3] we gave to the notion of saltus-

fu nc t o n s a new definition, different from that in Saks [7J and valid
for any Euclidean space. Now, by the saltus- and continuous parts
of a locally rectifiable curve (t) or of a point-function f(t) of locally
bounded variation] we shall understand the corresponding quantities,
in the sense of 49 [or 9] of [3], for the interval-curve [or the
interval-functionJ determined by o or by fJ. Thus the saltus-part
of is an interval-curve consisting of the saltus-parts of the
coordinate-functions of , and similarly for the continuous part of .

THEOREM. If (I) is the saltus-part of a locally rectifiable curve

(t), then L.(; E)--0 for each set E at all points of which o is
continuous. Further, the reduced (and therefore also the Hausdorff)
measure-length of vanishes identically.

PROOF. It is sufficient to establish the first half of the asser-
tion. In fact we have (; E)--L.(; E) by the theorem of [-4]4,
while on the other hand (@; X) vanishes for every countable set
X (see _4J2) and in particular for any set consisting of points of
discontinuity for . Writing for short s(I)=L(@; I), where I is any
closed interval, we observe that s(I) is a finite-valued additive
interval-function whose points of continuity coincide with those of
the interval-function @(I), i.e. of the curve ?(t). Since moreover
s*(X)--L.(@;X) for every set X as remarked in _24, our task
comes to proving the relation s*(E)=O for each set E at whose points

s(I) is continuous. Of course we may assume E bounded, i.e. con-
tained in some closed interval K.
Now s(I), being the length of the saltus-part of , must itself be

a saltus-function, that is to say, coincides with its own saltus-part
(vide [3, 12 and 49). Accordingly s(K) is the supremum of the
sum s0(J), where / is an arbitrary subdivision of K into a finite
number of closed intervals and where So(I) denotes further, for each
closed interval /, the inside excess of s over I (vide [3j, 1 and 3).
But if I stands for the interior of L we have so(I)-s(I)-s*(I).
In point of fact, s is a nonnegative additive function and so s*(I)
is the supremum of s(J) for closed intervals JI. It follows
directly that, given any positive number e, there exists in K a finite
set M containing both the extremities of K and subject to the con-
dition s*(K--M)<e. Noting the evident inclusion E(K--M)(EM),
where s*(EM)--O since s is continuous at all points of E by assump-
tion, we deduce at once that s*(E)s*(K--M)<e. On making e-->0,
this gives s*(E)-O, completing the proof.

THEOREM. f o is the continuous part of a locally rectifiable
curve (t), then /’(; E)----(; E) (o; E)=/(o; E) for each set E.
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PROOF. The theorem of 2, together with Theorem (4.6) on p. 46
of Saks 7, implies that it is enough to derive the middle equality
concerning the reduced measure-lengths. By arguing as in the proof
of the preceding theorem, this is further reduced to proving the
relation L,(; A)=L,(; A) for each set A at whose points the curve

is continuous. Let us now write for the saltus-part of as
above, so that (I)--o(I)(I) for every closed interval r. We then
have L,((; X)L,(; X)-L,(; X) for any set X, as is easily verified
by considering successively the three cases in which X is respectively
an endless interval, an open set, and a general set (cf. the theorem
of 24). It follows at once, in view of the foregoing theorem,
that L,(; .) L,(; A). Similarly we deduce that L,(; A)L,(; A),
starting this time from the relation (I)--(I)--(I). Consequently
we get L,(; A)=L,(; A), which completes the proof.
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