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1. Introduction. Consider an infinite sequence A=(a,) of in-
tegers. For any integers 7 and m=2 we denote by A(N,j, m) the
number of terms a, (1<<n<N) satisfying the condition a,=7 (mod m).
The sequence A is said to be uniformly distributed modulo m if the
limit
.1 . 1
thA(N, j, m)= po”

N>oo
exists for all j, 1<j<m. If A is uniformly distributed modulo m for
every integer m=2, we say simply that A is uniformly distributed.

I. Niven [1] has exhibited a number of interesting properties
of uniformly distributed sequences of integers. Among others he
proved that the sequence A, defined by a,=[ns], is uniformly dis-
tributed if and only if s is irrational or s=1/k for some non-zero
integer k, and that the uniform distribution of the sequence ([ns])
for every irrational s is equivalent to the well-known theorem that the
sequence of the fractional parts of ns is uniformly distributed modulo
1 for every irrational s (cf. e.g. [2]). It is not difficult to show that,
for every infinite sequence (a,) of mutually distinct integers, the
sequence ([a, s]) is uniformly distributed for almost all real numbers
s. (Here ‘almost all’ means ‘all but a set of Lebesgue measure zero’.)

The main purpose of the present note is to obtain some criteria
for sequences of integers to be uniformly distributed (with or with-
out the reference to modulus m).

Let us put, for brevity’s sake,

e(x) =exp (2rix).
We shall prove:

Theorem 1. Let A=(a,) be an infinite sequence of integers. A
necessary and sufficient condition that A be wuniformly distributed
modulo m, where m=2, is that

. 1 X h\ _
(1) hm—Ee(a,,——)-O
Nyoo N n=1 m
Sor all h=1,2,---,m—1.
Hence:

Corollary. A necessary and sufficient condition that an infinite
sequence A=(a,) of integers be uniformly distributed is that
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(2) limL Ze(a t)=0

N-»oo
Jor all rational numbers t,t3=0 (mod 1).

It is of some interest to note that the Corollary to Theorem 1
is, in a sense, dual to the theorem of H. Weyl [2] stating that an
infinite sequence of real numbers (a,) is uniformly distributed modulo
1 if and only if

llvlm Ee(a,, t)=0

for all non-zero integers t.

2. Proof of Theorem 1. Suppose that the sequence A=(a,) is
uniformly distributed modulo m, m=2. Then we have for 1<h<m—1

%ée@nm) —ZA(N J,m) e("h’>

Ni=
=3 2 +o)e(2)
=0(1) (N—)oo)

Conversely, suppose that
_2e<a _) ol) (N->o)

for all h=1,2,---,m—1. Then, it is clear that

iA(N,j, m) e(j_h>={o(N) (N->ow) for 1<h<m-—1,

= m N for h=m.
Now, let & be any integer satisfying 1<k<m. It follows from the
above relation that

mA(N, k, m)= zA(N im3 e<('7 n:‘)")

=o(N)+N  (N->),
whence

LA k,my=L o)  (N-oo).
N m

This completes the proof of Theorem 1.

3. An illustration. As an application of the Corollary to
Theorem 1 we shall prove the following
Theorem 2. Let q be an integer greater than 1. Then the
sequence A=(a,), defined by
a,=[n"s],
18 uniformly distributed for every monm-zero real mumber s.
It suffices to prove this for s positive, Put
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a=[s], b=[N"¢],
where N>=1. For any integer k between a and b define B(k) as the
number of solutions in n of the equation
[n¥Yes]=Ek.

o= (-4 (4 vo0

= ko1 O(ke?).
sq

Then

Now, for any real (not necessarily rational) number ¢ with ¢3=0
(mod 1), we have

—Ee(a t)=-1 31 B(k) e(kt)

_Z_V_k a
L33 (& k09 ekt
TNE N\
=O(N")=0(1) (N—>o),
since .
STk e(kt) =O(N~"),

which can be easily verified by induction on g, and

3300842 e(kt)=0(b- b1 =O(N'+-"),

The result now follows from the Corollary to Theorem 1.

Note that Theorem 2 is not true for ¢=1.

4. An observation. It is known that, if (a,) is an infinite
sequence of mutually distinct integers, then the sequence (a, s) is
uniformly distributed modulo 1 for almost all real numbers s (cf.
[2]). We wish to show that the same is true for every uniformly
distributed sequence (a,) of integers. This means, in particular, that
if a sequence (a,) of integers is uniformly distributed then the con-
dition (2) holds for almost all real numbers t.

Theorem 3. Let A=(a,) be a uniformly distributed sequence
of integers. Then the sequence (a, 8) is uniformly distributed modulo
1 for almost all real numbers s.

It is sufficient to prove Theorem 38 for s with 0<s<1. Define
B(k) as the number of terms a,(1<%n<N) which are equal to k, k
being an integer. Clearly

A(N,j,m)=_ > B(k).

k=3 (mod m)
For any non-zero integer h we have

f 72 v dt=—; of | 52 B0 echiety [

= ﬁ; 1 BY(k).
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Given any real number ¢, 0<e<1, we choose an integer m such that

5 <m < 25
€ 4c
and then take N so large as to satisfy
A(N,j,m) 1 < £
N m 5
for all j=1,2,---,m. This is possible since it is assumed that the

sequence A is uniformly distributed, i.e. uniformly distributed modulo
m for every integer m=2. We have then

= SBW=5-L S B

1 N2 x=4imod m)

= A*(N, j, m)

oy

uMs uMs

St

\m;—§<€

Thus we have for all sufficiently large N
1 1 N 2
—ﬁﬂge(han t)| dt<e.

(1]
Since ¢, 0<e<1, is arbitrary, it follows that
. 1
lim— =
NEBN,; e(ha, t)=0

for almost all ¢ with 0<¢<1. As a denumerable union of sets of
measure zero is of measure zero, this completes the proof of Theo-
rem 3, in view of the Weyl criterion quoted in the Introduction.

A direct consequence of Thorem 3 is that if a sequence (a,) of
integers is uniformly distributed then so is also the sequence ([a, s])
for almost all real numbers s.

The converse of Theorem 3 does not hold in general, as the
following example shows. The sequence (n*s) is known to be uni-
formly distributed modulo 1 for every irrational s, while the sequence
(n?) is not uniformly distributed modulo m for infinitely many m
(cf. [1]): indeed, the congruence n*=j (mod m) is solvable in = only
for (m+1)/2 incongruent values of j(mod m) for every odd prime m.

5. Remarks. Niven [1] has observed that if a sequence A=(a,)
of integers is uniformly distributed modulo m,m=2, then we have

(3) ;@%é«%@:o

(which is a special case of (1) with 2=1), but the converse does not
hold except for m=2 and m=38. Here, it should be noted that, when
m=2 or m=38, the condition (8) is actually equivalent to the condi-
tion (1), as is readily seen. However, in general, (8) is so weaker
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than (1) that it is unable to guarantee the uniform distribution
modulo m of the sequence A.

So far we have treated only the one dimensional distribution
of integers on the real line. The notion of the uniform distribution
(with or without the reference to modulus m) of sequences of in-
tegers can naturally be extended to higher dimensional spaces (con-
sidering the distribution of sequences of integral vectors or lattice
points instead), and the corresponding extensions of the results of
this note will be obtained in an appropriate way.
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