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1. In this paper we shall denote with the space of all functions
on the real number field of class C whose derivatives decrease
rapidly and with the subspace of consisting of all functions in
with compact support. For the topology and see the Schwartz’s
book (4). And we denote 9(x+h) with 9(x) as a function of x.
The purpose of this paper is to prove the following

Theorem. Let T be a continuous linear mapping from to itself
which satisfies the following conditions:

I) T29() =9(--x),
II) T(9.)= T.. T.

Then Tg(x) must be equal to Eg(x) or Eg(--x), where Eg(x) is the

Fourier transform .le2ix*9(t)dt of 9(x).

2. First we shall prove a few lemmas.
Lemma 1. Let 9, be elements of and the support of be

contained in a, b_. If we put

f(x)-- b--a (x--h)4(h)

for every natural number n, where h--a (b--a)j, then the series

f(x),f2(x),.., converges to . in . and, a fortiori, in .
We omit the proof of this lemma because it is very easy.
Lemma 2. There is a continuous function r(x) on the real

number field such that
T(x) exp (2zihr(x)) T(x)

for every function in and every couple of real numbers h and x.
Proof. For any given x there exists an element of such

that T(x)O by Condition I. Let us denote T(x) with u(h, x)
or u(h). Because

T(x)

(,)=,=,%
we get

T(x)T(x)-- T(x)T4(x)
by Condition II. Therefore

T(?(x) T(x)u(h)
for every in . From this we can claim u(h)=O, because there
exists an element of such that T(x)-0. Also we see that if
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Tg(x)-O then Tg(x)O for all h. And by the fact +/-() we
obtain

T (x)-- T(x)u(h+ k)
T4(x.)u(k)
T(x)u(h)u(k)

and u(h+ k)--u(h)u(k).
Because is continuous as a functional of h, T is continuous
with respect to h and u(h) is also continuous in h. So we can write
u(h, x) as exp (2=ihr(x)) with some (complex) number r(x). Moreover
r(x) is continuous, for T(x) and T(x) are continuous in x.

Lemma 3. There is a real number a such that r(x)--ax for all x.
Proof. By the hypotheses of the theorem we get

T(Tg. T4)(--x)-- T9(--x). T(--x)

Applying T to the first and third terms in the above equation we
obtain

Tg, T-- T(9.)
by Condition I. If we substitute 9 and into this formula we have

Tg,T-- T(9.)-- T((9)),
or

and

fexp (2=ihr(x--t)) T(x--t) exp (2uihr(t)) Tq(t) dt

exp (2=ihr(x)) T()(x)

fexp (2ih(r(x--t) --r(x))) Tg(x-- t) T(t)+r(t) dt

f T (x-t)T4 (t) gt

for every and in . Because the set of every T(x--t)T4/,(t)
with and go in 3 as a function of t is dense in 3, we get

exp (2dh((x--t)+(t)--r(x)))- 1.
Therefore r(x-- t) r(x)-- r(t)
and so there is a number a such that

Now we shall prove a is a real number. Let a-fl/yi where
and " are real numbers with ’0, say " > 0. We take such a func-
tion in that the support of T is contained in [1, 2_. Then the
support of T(x)--exp (2=iahx)T(x) is also contained in [1, 2 and

d n 2=ah T(x)

in 1,2. Therefore Tg converges to 0 in if h tends to oo and
9(x)--T Tg(--x) converges to 0 in 3 by the continuity of T. But



No. 1_ Some Characterizations for Fourier Transforms. III 9

this is impossible. Q.E.D.
3. By Lemmas 2 and 3 we have

Tg(x)=exp (2ciahx)Tg(x) for every
Now we consider the functions 9 and in Lemma 1 and shall use
the notations in the same lemma. Then we have

Try(x)-- b--a T_(x)(h)-- b--a exp (--2ihx)(h)T(x).= =
And by Lemma 1 and the continuity of T we get

T(,)(x) exp (--2axh)(h)dh T(x)

By Condition II we obtain from this formula
T(x)=E(--a) for all in

But this equation is valid for any function in because is dense
in . And a is different from 0. Then,

(--x)--T(x)-EE( 1 (--x))
E(x)_,1. (_x).

So we get a=l and
or

Thus we have completed the proof of the theorem.
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