2. Some Characterizations of Fourier Transforms. III

By Koziro Iwasaki
Musashi Institute of Technology, Tokyo
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1962)

1. In this paper we shall denote with \mathfrak{P} the space of all functions on the real number field of class C^{∞} whose derivatives decrease rapidly and with \mathfrak{D} the subspace of \mathfrak{P} consisting of all functions in \mathfrak{P} with compact support. For the topology \mathfrak{P} and \mathfrak{D} see the Schwartz's book ([4]). And we denote $\varphi(x+h)$ with $\varphi_{h}(x)$ as a function of x. The purpose of this paper is to prove the following

Theorem. Let T be a continuous linear mapping from \mathfrak{P} to itself which satisfies the following conditions:
I) $\quad T^{2} \varphi(x)=\varphi(-x)$,
II) $T(\varphi * \psi)=T \varphi \cdot T \psi$.

Then $T \varphi(x)$ must be equal to $E \varphi(x)$ or $E \varphi(-x)$, where $E \varphi(x)$ is the Fourier transform $\int_{-\infty}^{\infty} e^{2 \pi i x t} \varphi(t) d t$ of $\varphi(x)$.
2. First we shall prove a few lemmas.

Lemma 1. Let φ, ψ be elements of \mathfrak{D} and the support of φ be contained in $[a, b]$. If we put

$$
f_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n} \varphi\left(x-h_{j}\right) \psi\left(h_{j}\right)
$$

for every natural number n, where $h_{j}=a+\frac{(b-a) j}{n}$, then the series $f_{1}(x), f_{2}(x), \cdots$ converges to $\varphi * \psi$ in \mathfrak{D} and, a fortiori, in \mathfrak{F}.

We omit the proof of this lemma because it is very easy.
Lemma 2. There is a continuous function $r(x)$ on the real number field such that

$$
T \varphi_{h}(x)=\exp (2 \pi i h r(x)) T \varphi(x)
$$

for every function φ in \mathfrak{P} and every couple of real numbers h and x.
Proof. For any given x there exists an element ψ of \mathfrak{P} such that $T \psi(x) \neq 0$ by Condition I. Let us denote $\frac{T \psi_{h}(x)}{T \psi(x)}$ with $u(h, x)$ or $u(h)$. Because

$$
(\varphi * \psi)_{h}=\varphi_{h} * \psi=\varphi * \psi_{h}
$$

we get

$$
T \varphi_{h}(x) T \psi(x)=T \varphi(x) T \dot{\psi}_{h}(x)
$$

by Condition II. Therefore

$$
T \varphi_{h}(x)=T \varphi(x) u(h)
$$

for every φ in \mathfrak{P}. From this we can claim $u(h) \neq 0$, because there exists an element φ of \mathfrak{P} such that $T \varphi_{h}(x) \neq 0$. Also we see that if
$T \varphi(x) \neq 0$ then $T \varphi_{h}(x) \neq 0$ for all h. And by the fact $\psi_{h+k}=\left(\psi_{h}\right)_{k}$ we obtain

$$
\begin{aligned}
T \psi_{h+k}(x) & =T \psi(x) u(h+k) \\
& =T \psi_{h}(x) u(k) \\
& =T \psi(x) u(h) u(k) \\
u(h+k) & =u(h) u(k) .
\end{aligned}
$$

and
Because ψ_{h} is continuous as a functional of $h, T \psi_{h}$ is continuous with respect to h and $u(h)$ is also continuous in h. So we can write $u(h, x)$ as $\exp (2 \pi i h r(x))$ with some (complex) number $r(x)$. Moreover $r(x)$ is continuous, for $T \psi_{1}(x)$ and $T \psi(x)$ are continuous in x.

Lemma 3. There is a real number α such that $r(x)=\alpha x$ for all x.
Proof. By the hypotheses of the theorem we get

$$
\begin{aligned}
T(T \varphi * T \psi)(-x) & =T^{2} \varphi(-x) \cdot T^{2} \psi(-x) \\
& =\varphi(x) \psi(x) .
\end{aligned}
$$

Applying T to the first and third terms in the above equation we obtain

$$
T \varphi * T \psi=T(\varphi \cdot \psi)
$$

by Condition I. If we substitute φ_{h} and ψ_{h} into this formula we have

$$
T \varphi_{h} * T \psi_{h}=T\left(\varphi_{h} \cdot \psi_{h}\right)=T\left((\varphi \psi)_{h}\right),
$$

or

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \exp (2 \pi i h r(x-t)) T \varphi(x-t) \exp (2 \pi i h r(t)) T \psi(t) d t \\
& \quad=\exp (2 \pi i h r(x)) T(\varphi \psi)(x)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \exp (2 \pi i h(r(x-t)+r(t)-r(x))) T \varphi(x-t) T \psi(t) d t \\
& \quad=\int_{-\infty}^{\infty} T \varphi(x-t) T \psi(t) d t
\end{aligned}
$$

for every φ and ψ in \mathfrak{P}. Because the set of every $T \varphi(x-t) T \psi(t)$ with φ and ψ in \mathfrak{P} as a function of t is dense in \mathfrak{P}, we get

$$
\begin{gathered}
\exp (2 \pi i h(r(x-t)+r(t)-r(x)))=1 . \\
r(x-t)=r(x)-r(t)
\end{gathered}
$$

Therefore
and so there is a number α such that

$$
r(x)=\alpha x .
$$

Now we shall prove α is a real number. Let $\alpha=\beta+\gamma i$ where β and γ are real numbers with $\gamma \neq 0$, say $\gamma>0$. We take such a function φ in \mathfrak{P} that the support of $T \varphi$ is contained in [1,2]. Then the support of $T \varphi_{h}(x)=\exp (2 \pi i \alpha h x) T \varphi(x)$ is also contained in [1,2] and

$$
\left|\frac{d^{n}}{d x^{n}} T \varphi_{h}(x)\right| \leq \sum_{m=0}^{n}\binom{n}{m}|2 \pi \alpha h|^{n-m}\left|\frac{d^{m} T \varphi(x)}{d x^{m}}\right| e^{-2 \pi \gamma h x}
$$

in [1,2]. Therefore $T \varphi_{h}$ converges to 0 in \mathfrak{F} if h tends to ∞ and $\varphi_{h}(x)=T T \varphi_{h}(-x)$ converges to 0 in \mathfrak{P} by the continuity of T. But
this is impossible. Q.E.D.
3. By Lemmas 2 and 3 we have

$$
T \varphi_{h}(x)=\exp (2 \pi i \alpha h x) T \varphi(x) \quad \text { for every } \varphi \text { in } \mathfrak{P} .
$$

Now we consider the functions φ and ψ in Lemma 1 and shall use the notations in the same lemma. Then we have

$$
T f_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n} T \varphi_{-h_{j}}(x) \psi\left(h_{j}\right)=\frac{b-a}{n} \sum_{j=1}^{n} \exp \left(-2 \pi i \alpha h_{j} x\right) \psi\left(h_{j}\right) T \varphi(x)
$$

And by Lemma 1 and the continuity of T we get

$$
T(\varphi * \psi)(x)=\int_{-\infty}^{\infty} \exp (-2 \pi i \alpha x h) \psi(h) d h \cdot T \varphi(x)
$$

By Condition II we obtain from this formula

$$
T \psi(x)=E \psi(-\alpha x) \quad \text { for all } \psi \text { in } \mathfrak{D} .
$$

But this equation is valid for any function in \mathfrak{B} because \mathfrak{D} is dense in \mathfrak{F}. And α is different from 0 . Then,

$$
\begin{aligned}
\psi(-x) & =T^{2} \psi(x)=\frac{1}{|-\alpha|} E E \psi\left(\frac{1}{-\alpha}(-\alpha x)\right) \\
& =\frac{1}{|\alpha|} E^{2} \psi(x)=\frac{1}{|\alpha|} \psi(-x) .
\end{aligned}
$$

So we get $\alpha= \pm 1$ and

$$
T \psi(x)=E \psi(x) \quad \text { or } \quad E \psi(-x)
$$

Thus we have completed the proof of the theorem.

References

[1] S. Bochner and K. Chandrasekharan: Fourier transforms, Ann. Math. Studies, 19, Princeton (1949).
[2] K. Iwasaki: Some characterizations of Fourier transforms, Proc. Japan Acad., 35, no. 8, 423-426 (1956).
[3] -: Some characterizations of Fourier transforms. II, Proc. Japan Acad., 37, no. 10, 599-604 (1961).
[4] L. Schwartz: Théorie des Distributions, Hermann, Paris (1950).

