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10. On the Reduced Measure.Bend of Curves

By Kanesiroo ISEKI
Department of Mathematics, Ochanomizu University, Tokyo

(Comm. by Z. SUETUN/, M.J.A., Feb. 12, 1962)

1. A property of B.measurable curves. Continuing our recent
note [4], we shall commence the present study with the following
result, whose proof is based on an argument essentially the same
as that of the proof for Theorem (4.3) stated on p. 113 of Saks
and concerning the measurability of Dini derivates. The underlying
space R will be assumed at least 2-dimensional unless specified
otherwise.

THEOREM. Given a B-measurable curve and a B-measurable
spheric curve (both situated in R), let K be the set of the points
t at which y(t) is a right-hand derived direction for . Then Kis
a Borel set.

REMARK. Needless to say, a curve is called B-measurable iff all
its coordinate functions are B-measurable.

PROOF. For each pair p, q of natural numbers let us define a
point set K(p, q)R as follows: a point t of R belongs to K(p, q)
when and only when there exists an x such that

t-q-l<x<t+p-1, I(x)--(t)l>q-, (t)[(x)--(t)]<p-.
We see at once that K(p, q) is descending and ascending in p and q
respectively and that the set K of the assertion may be written

K=lim lim K(2p, q)= lim lim K(p, 2q).
q P q

Since is B-measurable, we can easily associate with each
n-=l, 2,... a B-measurable curve (t) such that the image RJ
is countable and that I(t)--(t)[n- for every tR. Similarly
there is a B-measurable spheric curve n(t) such thatR is counta-
ble and In(t)--(t)[n-1 for every t. So that the two sequences of
curves, ((t), (t),... and @(t), .(t),..., tend respectively to (t)
and (t) uniformly on the real line. Let us now replace, in the above
definition of the set K(p,q), the curves and by and re-
spectively and write Kn(p, q) for the resulting set. We then denote
for short the two limits

lim-inf K(p, q) and lira-sup K(p, q)

by U(p, q) and V(p, q) respectively and find readily that
K(2p, q)CU(2p, q)C V(2p, q)K(p, 2q).

From this we deduce, by what has already been proved, that
Klim lim U(2p, q)lim lim V(2p, q)K.

P q P q
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Consequently we may replace in this relation the signs of inclusion
throughout by those of equality. It follows that our theorem will
be established if we verify each K(p, q) to be a Borel set.

Now the definitions of the curves and ’n plainly imply that
there exists for each n a decomposition of the real line into a
sequence (countable, of course) of nonvoid Borel sets B on each of
which both and are constant. Then the intersection of the set
K(p, q) with each B, which is immediately seen to be open in B,
must be a Borel set. Hence so must also be Kn(p, q) itself, and this
completes the proof as observed above.

2. A relation involving bend, measure.bend, and reduced
measure.bend. Let us premise an auxiliary inequality which may be
established in the same way as for the lemma of [2_2.

LEMMA. We have 2"(F; E)2.(; E) for any curve and any
set E, where )’(; E) is the reduced measure-bend of on E defined
in [34 and the measure-bend/2.(; E) is interpreted in its extended
sense as remarked in [43.

It was proved in [24 that if a locally rectifiable curve is
continuous at all points of a set E, then (; E)=L.(; E)L(; E).
(Here the Euclidean space in which the curve lies may exceptionally
be of any dimension. All the other curves considered in this note
will be situated in R, where m2.) This result has now the follow-
ing analogue in bend theory, the derivation of which is the object
of the present section.

THEOREM. Given a curve and a set E, suppose that tg.(; X)
vanishes for every countable set XE. Then

/’(; E)=:2,(; E)/2(; E).
PROOF. 1) The equality of the assertion follows at once from

the inequality. For, whenever a sequence / of subsets of E covers
E, we have /2,(; E)/2,(; z/)t9((; /) provided our inequality is
true. By definition of reduced measure-bend this yields readily
tO,((Z; E)’(; E), which combined with the above lemma leads to
the equality.

2) The inequality. We observe first that if an endless interval
is expressed as the join of a finite sequence of n endless intervals,
then tg(; [9_) cannot exceed tg(; 9)+ (n-- 1)z; indeed this is easily
proved when n--2, and then the general case follows directly by
induction. On inspecting now the proof for part (i) of the theorem
of [43 it is immediately found in view of what has just been said
that, in order to derive the inequality of our theorem, we may add
without loss of generality the hypothesis that is straightenable,
i.e. that 9(; R) q- oo. Moreover the set E may be supposed bounded,
since 9,(; --n, nE)-->tg,(; E) as n tends to infinity by positive
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integral values. These two assumptions will be kept throughout the
rest of the proof. Our argument will conveniently be divided into
four parts in which is further supposed to be respectively (a)
continuous and light, (b) continuous, (c) locally rectifiable, and finally
(d) not locally rectifiable. The latter three cases will be reduced
each to the preceding one.

Consider the first case. Since is straightenable, its measure-
bend is a bounded set-function. Hence, if C denotes the set of all
the points t at which. /2.(; {t})--0, we see that R-C is countable and
that C is therefore a Borel set. For any set YR, on the other hand,
t.(; Y) is plainly the infimum of 9.(; G) for all open sets GY.
From these facts we can draw two direct conclusions. Firstly,
there exists a bounded Borel set BE such that /2. (; B)-- 9. ((?; E)
and that /2.(; X)-0 whenever X is a countable subset of B. Here
we may of course subject B to the further condition BE, and then
it is evident by continuity of that /2((; B) /2(; E). Secondly,
tg.((?; B) is the supremum of 9.(; F) for all closed sets FB. It
thus follows that the set E may be assumed not only bounded, but also
closed and uncountable. Let us remark explicitly, in passing, that
the closedness and uncountability of E will only be utilized in deal-
ing with the present case (a), and not for the remaining three cases.
It is now possible to construct from a new curve in precisely
the same way as in the proof for the theorem of 24 quoted in the
above. Thus coincides on E with and is linear on each interval
contiguous to E.

This being so, denote by t the family of all the closed inter-
vals I for each of which E--I is a countable set. Such intervals
certainly exist since E is bounded. Writing I0 for the intersection
of the family , we find that E--Io is countable. Indeed, R--Io is
the union of all the open sets R--I, so that there exists in , by
the LindelSf covering theorem, an infinite sequence of intervals
Jn(n- 1, 2,..’) whose complements already cover R--I0. Then E--I0,
which is the join of the countable sets E--J, must itself be counta-
ble. This, coupled with the uncountability of E, shows that I0 is
an infinite set. Since moreover I0 is by definition bounded, closed,
and convex, it iollows finally that I0 must be a closed interval, say
a0, bo. Accordingly, if we write K-(ao, bo) for short, E--K is
countable. It is further evident that the points a0 and b0 are re-
spectively a right-hand and a left-hand point of accumulation for E.
Recalling now the construction of the curve , we therefore find
without difficulty that

/2,(; K)/2(; K) -/2(; EK) t?(; E)--/2(9; E).
On the other hand 9,(; E--K) vanishes by hypothesis and by
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countability of E--K, so that 9,(;E)--[2,(;EK). But part (ii)
of the theorem of [43 ensures tg,((?; EK)2,(; EK). The results
obtainecl in the above imply together that

2,(; E)/2,(; EK)/2,(; K)t9(; E),
which proves the required inequality under the assumption (a).

We shall now turn to the consideration of case (b). The set
E being bounded, we may suppose that there is an open interval
(a, fl)E such that the curve is rectifiable on neither of the in-
tervals (--,a) and (fl, +o). Noting that is locally rectifiable
in conformity with [164, let s(t) be a length-function for , i.e.
any real function such that s(t’)--s(t)--L(; [t,t’) whenever tt’.
Evidently s(t) is then a non-decreasing continuous function with the
whole real line for its range. With the help of this function we
now construct from a new curve (u)by putting (u)-(t)for each
u eR, where t is any point fulfilling s(t)-u. This defines $ uniquely
since we have (t’)-(t) whenever s(t’)-s(t). We see immediately
that $ is a light continuous curve and that 9($; s[X)--9(; X) ior
every set XR (in particular, therefore, $ is straightenable). Thus
it is sufficient to deduce tg,(; E)9($; s[E).

This being so, let A be an interval of constancy for , i.e. a
maximal closed interval on which is constant, and consider any
closed interval J adjacent to A. On account of [135, we find that
tg(; J)-0 as Jl-0. From this we infer at once that if I is any
open interval containing an extremity of A, then 9(; I)->0 as
This, combined with the definition of measure-bend, requires that
/2,(;A)-0. Since there is at most a countable infinity of the
intervals A, it follows that 9,(; A0)-0 where A0 stands for the join
of all A. Writing Eo--E--Ao we therefore get tg,(; E)-tg,(; E0).
It is further easy to see that if toeEo and Uo-S(to), then 9,($; {u0})
=/2,(; It0})--0. Indeecl, this is an immediate consequence of the fact
that whenever I is an open interval containing to, its image
has u0 for an interior point and 9($; s[I) equals /2(; I). Writing
for short M=s[Eo and recalling the lightness and continuity of
it follows now from what we have already proved that /2,($; M)
t9($; M). To derive the required relation 9,(; E)2($; s[E), it is
therefore enough, in view of /2,(; E)-- tg,(; E0) established above,
to verify that 2,(; E0)/2,($; M).

For this purpose, suppose M nonvoid together with E0 and con-
sider an arbitrary sequence z/ of endless intervals covering M, so
that t9,($; M) is by definition the infimum of 9($; z/) for all choices
of /. Then the inverse image I’--s-_I of each interval I in / is
likewise an endless interval in virtue of continuity of s(t). Since
clearly I=s[I’], we find further 9($; I)--9(; I’). If, consequently,
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denotes the sequence obtained from Z by replacing each I by I’, it
follows n vew of the ncluson E0[/’ that /2,(;E0)2(;/’)
--9($; z/). Since this implies (2,(; E0)9,($; M), we have proved
/2,(; E)2(; E) under the assumption (b).

Let us pass now to case (c). Let H be the countable set con-
sistng of all the points of dscontnuity of . In relation to H we
can construct on R a pair of functions p(u) and q(t) in exactly the
same way as in the proof for the theorem of 24. By means of
these functions we define further a continuous curve o(u) by quite
the same process as n the quoted proof. It is then obvious that
tg(; qX)--tg(; X) for every set X and that tg(; p-G)-tg(; G)
for every open set G. The latter relation implies in particular that
w is straightenable. If we now write E--E--H, we get by hypothesis
2,(; E)--/2,(; E). So that it suffices to show /2,(; E)9(; E).
For this purpose we observe in the first place that if teE and
u-q(t), then /2,(w; {u})-/2,(; {t})-0. In point of fact, the inverse
image p-[_I of each open interval I containing t is also an open
interval containing the point u, and we have tg(w; p-[I)-9(; I)
by what has just been said above; whence the result. Accordingly,
by case (b) treated already, we obtain /2,(w; N)/2(w; N), where N
abbreviates the bounded set q[E. But 9(w; N)--2(; ,), and so
we need only examine the inequality 9,(;E)9,(w;N) in what
follows.

Consider any open set D of real numbers. Since the curve
is continuous at all points of E, we can easily attach to each point
t of the intersection pVD.E an open interval U(t) such that V(t)
=p-[U(t)] is an open interval in D. If, therefore, S stands for
the (possibly void) join of all the intervals U(t), it follows that S is
open and that the set p-[S, which is clearly the join of all V(t),
lies in D. Consequently, noting the inclusion p[D.ES, we deduce
in view of definition of measure-bend that

9,(; pD ..E)/2(; S)-9(o; p-[S)/2(o; D).
This being established, suppose N nonvoid together with E and cover
N by an arbitrary sequence 0 of endless intervals J. The last
relation then implies that 9,(; p[J.E)f2(o;J) for each J. But
the sets p[J together cover E, for evidently E--p[N. Therefore
9,(; E)/2(; 0). Since /2(; N) is the infimum of 9(; 9), this leads
finally to 9,(; E)9,(w;N), which implies the inequality of our
theorem as already observed.

It remains to treat case (d). Let us begin by defining a set T
of real numbers as follows: a point t beiongs to T iff the curve
is unbounded on every open interval containing t. Consider any
point toe T and choose any pair of points a and fl such that at0fl.
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Then 9 is unbounded on (a,/), so that for each positive integer n
there is in (a, ) a point t for which the two vectors 9(t)--9(a)
and 9()--9(t) are .0 and make an angle greater than --n-.
This implies that t9(9; [a, fl), whence we derive t2,(9; {t0}) by
making a->t0 and fl--->to simultaneously. Since 9 is straightenable,
we conclude that T is a finite set. In consequence, R--T is the join
of a finite disjoint sequence / of endless intervals and, since 9,(9; T)
vanishes by hypothesis, we have 2,(9; E)-t9,(9; E/). On the other
hand it is obvious that 9(9; E3)9(9; E). In order to prove 9,(9; E)
t9(; E), it therefore suffices to obtain 2,(9; EI)2(9; EI) for each
interval I which occurs in /. Since I is disjoint from T, each point
t of I can be enclosed in an open interval U(t)I on which 9 is
bounded. Then 9 must be rectifiable on U(t)in virtue of the lemma
of 41. Therefore, by the covering theorem of Heine-Borel, 9 is
rectifiable on every closed interval in L The relation tg,(9;EI)
_<::__2(9; EI) is now a direct consequence of what we have already
proved for case (c). In fact the interval /, which is endless, can be
transformed into the whole real line by a suitable change of para-
meter; but the restriction of the curve 9 to I is then changed into
a locally rectifiable curve of bounded bend. (The set EI might become
an unbounded set, say E*. But this does not matter at all, since
then we need only consider bounded subsets of E*.) Our theorem
is thus completely proved.
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