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34. On the Behaviour of Analytic Functions on the
Ideal Boundary. I

By Zenjiro KURAMOCHI
Mathematical Institute, Hokkaido University
(Comm. by K. KUNUGI, M.J.A., April 12, 1962)

The present paper is an application of the previous papers “ Poten-
tials on Riemann surfaces” and “Singular points of Riemann surfaces”?
which we abbreviate by P and S respectively. Notations and termi-
nologies are to be referred to them.

Let R be a Riemann surface with positive boundary. Let
R,(n=0,1,2,--- ) be an exhaustion with compact relative boundary
oR,. Let N(z,p) be an N-Green’s function. We suppose that N-
Martin’s topology is defined on R— R,+ B”, where B” is the ideal
boundary of R obtained by the completion of R— R, with respect to
N-Martin’s topology. We denote by BY the set of N-minimal boundary
point. Then BY=BY—BY is an F', set of capacity zero. Let G be a
domain® in R—R, and let ,N(z,p):pecBY be the least positive super-
harmonic function in R—R, with ;N (z, p)=N(z,p) on CG [,N(z,p)

=lim U¥(z), where U”(z) is a harmonic function in G such that
M=o

U™(z)=min (M, N(z, p)) on CG and U"(z) has M.D.I. (Minimal Dirichlet
Integral) over G]. If N(z,p)>.N(?,p), we say that G contains p
N-approximately and denote it by Ggp.

Let G(z,p) be a Green’s function of R. Put K(z, p)=—q(ﬁp—)—,
G(p,, D)

where p, is a fixed point. We suppose that K-Martin’s topology is
defined in R+ B* by use of K(z,p), where B is the ideal boundary.
Let B Dbe the set of K-minimal boundary points of K. Then B¥
BX—BK is an F, set of harmonic measure zero. Let G be a domain
in R and let Ky (z, p) be the least positive superharmonic function
in R with K, (2, p)=K (2, p):peBF on CG. If K(z,p)>K(z p), we

say that G contains p K-approximately and denote it by G5p. Then
we have the following

Lemma 1. a). 1). If G,3p:i=1,2--,1, NG, 5p. 2. If G5p,
(int CG) % p. 3). E[zeR+B”, dist (2, p)<%}=’vn(p)§p.

1) Z. Kuramochi: Potentials on Riemann surfaces; Singular points: Journ. Sci.
Hokkaido Univ. 14 (1962).

2) We suppose that 0G consists of at most enumerably infinite number of analytic
curves clustering nowhere in R.
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b). 1. If GSp:i=1,2--,1, 1G.5p. 2). If GEp, (int CGS p.
3). E|zeR+BF, dist (2, p)<%:l=’vn(p)§ p.

Proof of a). Case 1). p is singular: Cap (p)>0. In this case the
proof of a) is given in Theorem 8 of S.

Case 2). p is not singular: Cap (p)=0 and peBy. At first we
show ,(4eN(2,»)=0. Since p is one point € By, ,(ccN(z, »))=0a,N(z,p):
a,=0. Since Cap (p)=0, N(z, p)— (ceN(2, p))=U,(2) is superharmonic
by Theorem 6 of P and by mass of Uy(2)<1 we have D(min (M, U(2))
<2zM. Put

ceN (@, p)=a,N(z,0)+Uy(2), ,Us(2)=0a,N(z, D),

Un(z):anMN(z’ p)+Un+1(z)7 where p(Un(z))zannN(z’ p) ch= 1’2’° °
Then D(min (M, U,(2))<2zM,U,(2) is superharmonic, U,(z)} U.(2)
and U.(z) is also superharmonic by Theorem 4 of P. By N(z,p)

=0eN(z, p)=§aiN(z, »)+U.(2) we have ﬁai§1 and lim a,=0 and
H(Ux(?))=lim a,N(z, p)=0.
Suppose G 3 p. Then N(z,p)> N(z,p) and i a, <1, whence
U.(2)>0. Now Um(z)=(1—i a;)N(z,p) on CG and U.(z) is super-

harmonic. On the other hand, ,,N(z, p) is the least positive super-
harmonic function with (N(z,p)=N(2,p) on CG. Hence U,(z)

=1 -—i a)oeN(z,p) and ,(,¢N(z »)=0. Suppose G, 5 p.  Then

p(CGiN(z’ p))=0 and p(%}CGiN(zr p) = Z p(CG,;N(z, »))=0. Hence N(z,p)
1

=,N(z, p)> p(§CG N(z, p)), whence N(2, D) > 50s,N(2,p). Thus NG, 3 p. If

G3p, Lean N, D)= ,(ceN(z, p))=0. Similarly by int CG3p Lan,V(Z, D))
=0. Now N(z,p)=,N(z, 0)=,00eN(# )+ ,0e¢N(z,0)=0. This is a
contradiction. Hence we have a). 2). The proof of a). 3) is given in
Theorem 19 of S.

Proof of b). Let U(z) be a positive superharmonic function and
let F' be a closed set of BX. Then U(z)— Uy(?) is superharmonic i.e.
U(z)—U,(z) is superharmonic (F' is not necessarily a closed set of
harmonic measure zero). Hence we have b). 1 and b). 2 similarly as
a). The proof of b). 3) is given in Theorem 3 of S.

Let w=f(2):2¢R be an analytic function whose values fall on
the w-Riemann sphere. If the spherical area A(f(2)) of the image
of R by w=/,(2) is finite, we call f(2) a function of D-type. Map
the universal covering surface R* of R onto |{|<1 conformally by
z=2(¢). If the function w=f(2({))=,({) has angular limits a.e. on
|€]=1, we call f(2) a function of F-type. It is well known, if w= f(z)
is of bounded type (the characteristic function of T(2) of f(?) is
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bounded), T(()<T(2)® and w=f({) is of F-type, where T({) is the
characteristic of w=£). Put M*»)=N7(G):G5p and M*(p)
=Nf(G):G,5p, where the intersection is taken over all domains
containing N(K)-approximately. We see that by Lemma 1 that
M¥(p)(M*(p)) is closed and consists of only one point or of a conti-
nuum. Then we have the following

Theorem a). Denote by S™(S*) the set of points such that
M¥(p)(M*(p)) is a continuum. Then if w=f(2) is of D-type, S*+Sy
does mot contain any closed set of positive capacity.

b). If w=f(2) is of F-type, S*+ BE does not contain any closed
set of positive harmonic measure.

Lemma 2. a). Let G and G':GDG be domains such that
D(w*(2))< oo, where w*(z) 18 a harmonic function in G—G such that
0*()=0 on G, w*(z)=1 on 3G’ and »*(z) has M.D.I. Let F be a
closed subset of BY, Then we can define C.P. of FNG relative to
G:o(FNG,z, G)—hm hm Wn,n+i(7), Where o, ,..(2) is a harmonic func-

tion in (GNR,.)— (F NG): F, E[zeR—i—B” dist (F, z)<~] such
tha’t wn,nwl(z):() on aGnvai’ aan n,n+i(z) O on (aRn+inG) (FnﬂG,)’
0y ni(R=1 on F,NG. If o(FNG, 2 G)>0, G contains at least one
point pe (1 BY N-approximately.

b). Let G be a domain and let F be a closed set of B*. If
w(z, F,G)=lim lim w, ,,,(2)>0, G contains at least one point pe Bf N F
n (1

K-approximately, where w, ,..(2) s a harmonic function in (GNR,.,)
—F, such that w, ,,,(2)=0 on (0GNR,.;)+oR, ,—F, and w, , (2)=1
on Fan[zeR—l—B", dist (z, F)g—}{] .

Proof of a). For the simplicity put w(z)=0(F NG,z G).
Assume w(2)>0. Put D=D(w(z)) (<). Then w(z) has M.D.I. over
R=FE[z 0,<w(2)<0,]:0<5,<6,<1 and there exists a regular niveau
curve C, for almost all 6:C,=FE[z w(z)=0d]. Put U(z)=,c0(z, F)
(o(F, 2) is C.P. of F'). Then U(z) has M.D.I. over G, whence U(z)
has M.D.I. over 2. Hence U(z)—hm U.(z), where U,(z) is a harmonic

function in R,NQ such that U,(2)=U(2) on C,, (1=1,2) ———U 2(2)=0
on QM JR,, where C;, is regular. Then by the Green’s formula
f Un()-2(2) ds= f Une) Lo, ds,

where w,(?) is a harmonlc functlon 1n QN R, such that ,(2)=d; on

3) Z. Kuramochi: Dirichlet problem on Riemann surfaces. 1, Proc, Japan Acad.,
30, 731-735 (1954).
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C,, and aa 0,(2)=0 on dR,NQ and lim w,(?)=w(?). Let n—o. Then
n n

by Theorem 3 of P we have f U(z)—g—w(z) ds= f U(z)—a—w(z) ds,
b on 2 on

L 2
D= f —;—w(z) ds:1=1,2. Now U(?)<1 in R—R,, whence there exists
n
05.

a positive number ¢, such that

f U(z)%w(z) ds<D(1—¢,). Let 3,>1. Then
(&)

fU(z)—a——w(z) ds<D(1—eO)<fw(z)—Q—w(z) ds=2Dg, for 6,>1—¢,.
5 on i on
Whence (I, 2)<o(FNG, 2, H=w(F,z) in G.

Now by Theorem 13 of P w(F,z) is represented by a positive
mass on F(BY:w(F, 2)= f N(z,p)du(p). And by Theorem 4 of P

wom®(F, 2) Y o(F, 2), where (CG),=CGNR,. Since N(z,p) is uniformly

continuous with respect to p in every compact set not containing p,

N(z2,p)—>N(z,p) on (CR), as p,—>». Now N(z,p,) and N(z,p) are

harmonic in R—R,—(CG),, whence by the maximum principle
max = |N(z p)—N(z p)|= max [N(z p)—N(z p)|.

2€ R—Ro—(CGn m
Hence we can find a sequence of linear forms V,(2)=3 ¢;N(z, p,):
¢;>0:m=1,2,--- such that V,()— o(F,?2) uniformly on (CG), and

conVu@=3 ¢ conN (@ D)= [ N (2, ) di(p) uniformly on (0G), as
m—> oo, whence by the maximum prineiple erm V(R f waonlN (2, D) dp(p)
not only on (CG), but also on (CG),+(R—R,—(C®),)=R—R,, because
«;a),.(ﬁ‘. ¢;N(z, pi))zf} ¢ wemlN(7, p;) is clear. Let m—>oco. Then
wonlF, )= con( [ N@ D) du®))= [ 0Nz, 2) dpe(p).
Let n—>oco. Then by (e,,N(2, »)$ceN(2, ») We have q0(F 2,)
= f caN(2, p)dp(p) and
oF, )= [ Nz, 2) dp®)> [ 0Nz, B) du(p)=coo(F, 2).
Hence there exists at least a point pe F'(] By such that N(z, p) > N(z, p),
ie. G]av P.
Proof of b). Assume w(F,z2,G)>0. Put w(9G, z G)=1—w(z, G
NB% G) (Z1—w(F,2,G)). Put G,_..=FE[zc¢Gw(F, 2 G)<l—¢] and
G.=E[z2eG, w(0G, 2z, G)>¢e]: %>e>0. Then by P.H.3 of P w(F

NGi.., 2 G=0=w(G.N B~ 2, ) =w(FNG., 2, G). Hence by w(FN(G,._.
+G0), 2, Q) =w(FN G-, 2, G)+w(FNGl,2G)=0 and by w(FN(C(G,-.
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+G)), 2, G)+w(FN(G,_., 2, G.), =w(F,2, G)>0 we have w(FNCG,_.
NCG., z,G)>0 and CG,_.CG! is non void. Whence w(F', z)—ws(F', z)
=w(F, z,G)—w(0G,2,G)=1—2¢>0 in CG,..CG.. Hence w(F,z)
=Wee(F,2). Thus we have (b) as above.

We denote by 6M(p) the spherical diameter of M(p). Let C be a
circle in the w-sphere. Then f~!(C) consists of enumerably infinite
number of domains. Then by the definition of 6M(p) we have easily
the following

Lemma 3. If dia (C)<d,, any domain of f*(C) does not contain
N(or K) approximately a point such that dM"(p)(oM*(p))>d,.

We have by Lemma 1 the following

Lemma 4. If M(p)=q (one point), there exists an asymptotic
path L tending to p on which f(z)—>q as z—>p.

L

Lemma 5. Let G be a domain in R. Then E[peBf peG] is
a G; set in Bf. Let C,,(t=12,---) be a system of spherical circles
with radius 1 such that any circle with radius SL 18 contained in

M n
a certain C, ;. Put T,f,i=E[peBlL,pé any component of f~C, )]
and S,L.zE[per, aM(p)g%] . Then USE=U (NTL) is a Gy, set in
B, where L=N or K.

Proof. By the compactness of (CG), «nIN(2, D)o, N(2, D) as
p;~>p and by ¢e.N(2, D) 1 caN(2, p) a8 N—>co, N(2,p)—0eN(2, p) is upper

semicontinuous and E[peBf, N(z,p)--N(z, p)=0] is a G, set in B.
Now f°C,,) consists of at most enumerably infinite number of

domains. Hence T, is also a G, set. Clearly by dia (C,, l)_——
S,,C(J T,.. Next assume pé¢Sj,. Then 5M(p)<——and there ex1sts

a domain G such that dia (f(G))———?E, Gn,iap and a cu‘cle C,.Df(G).
Hence pd;‘ ﬂ T,. and S,,Dﬂ T): and USY=U(NT,.. Above facts
n %

for K(z,p) are proved s1m11ar1y.
Proof of the theorem. Proof of a). Assume that there exists
a number 7, such that ()T,J.VM—}-B&’ has a closed set F' of positive

capacity. Let C; be a circle with radius such that 2 int C,

5n,
covers the w-sphere. Then by ZGi DR—R, (G, ; is a component

of f%C,)) and by Ew(Gﬂ G,,; ﬂF z)>w(F z), there exists at least one
domain G of G ; such that w(F'NG,2)>0, where o(FNG,z2) is C.P.
of F1G. Let C, be a spherical circle with the same centre as that
Now by a rotation of the w-sphere we

of C, and with radius
Mo
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can suppose without loss of generality that the closure of C‘; does
not contain the north pole of the sphere. Let G be a component of
f~%C,) containing G. Let U(z) be a continuous function in the w-
sphere snch that U(z) is harmonic in @—Ci, U(2)=0 on the comple-
mentary set of C, and U(w)=1 on the closure of C,. Then max

(l alg;w) , {arg(w) D:M < oo :w=u+iw. Consider the function U(z)
v
=U(f""(w)):2e R—R,. Then D(U(z))< M*AK, where A is the spherical
area element
spherical area element

in (i (clearly K< ). Let ,(?) be a continuous function in R—R,
such that o,(2) is harmonic in R—E,—(F,N G)<F,,=E’ (zeR—i— BY, dist
L
(2, F)g-l-D, 0,(2)=0 on 3R, , w,(2)==1 on (F,(1G) and has M.D.I. Then
n

area of the image of R and K=maximum of

there exists a number #»’ such that D(w,(2))<L<oc for n=n" and
0<w(FNG, 2)=lim 0,(2). Put @,(2)=min (U(?), 0,(2)). Then @,(z)=0
on R, +4G, @,(2)=1 on (F,NG) and D(@,(2))=D(w.(2))+ DU (2)) <L’
<o for n=n'. Let @,(z) be a harmonic function in G—(F.N G) such

that @,(2)=0 on 3@, @(z)=1 on F,NG and has M.D.I. Then by the
Dirichlet principle
0< D((FNG,2)) < D(@,(2)) <D(@,(2)) <L for n=n'.

Hence lim @,(2)=o(FNG,z, §)>O. Hence by Lemma 2 G contains at
least one point peF(] BY N-approximately, on the hand, by Lemma 3
2 comp=1.

Lo Mo
This is a contradiction. Hence we have a) by Lemma 5.
Proof of b). Assume NTx ;4B has a closed set F' of positive
%

G does not contain any point of F' by dia (5): 5

harmonic measure. Then similarly as above, we can find domains
G and @ such that w(FNG,2)>0 and dist (f(G), f(a(?))gg}z_>0,
0

Since f(€) is of F-type, we have mes E>0 by w(F(G,z)>0, where
E is the set on |[{|=1 on which f({) has angular limits contained
in £(G) and w(FNG,2)=1a.e. on E. Now f(3G) does not tend to E

by dist (f(G), f(a))>0 and we see w(F'(1G,z?, §)>O. Thus we have
b) similarly as a).



