34. On the Behaviour of Analytic Functions on the Ideal Boundary. I

By Zenjiro Kuramochi
Mathematical Institute, Hokkaido University
(Comm. by K. Kunugi, m.J.A., April 12, 1962)

The present paper is an application of the previous papers "Potentials on Riemann surfaces" and "Singular points of Riemann surfaces" ${ }^{1)}$ which we abbreviate by P and S respectively. Notations and terminologies are to be referred to them.

Let R be a Riemann surface with positive boundary. Let $R_{n}(n=0,1,2, \cdots)$ be an exhaustion with compact relative boundary ∂R_{n}. Let $N(z, p)$ be an N-Green's function. We suppose that N Martin's topology is defined on $R-R_{0}+B^{N}$, where B^{N} is the ideal boundary of R obtained by the completion of $R-R_{0}$ with respect to N-Martin's topology. We denote by B_{1}^{N} the set of N-minimal boundary point. Then $B_{0}^{N}=B^{N}-B_{1}^{N}$ is an F_{σ}^{\prime} set of capacity zero. Let G be a domain ${ }^{2)}$ in $R-R_{0}$ and let ${ }_{c G} N(z, p): p \in B_{1}^{N}$ be the least positive superharmonic function in $R-R_{0}$ with ${ }_{C G} N(z, p)=N(z, p)$ on $C G\left[{ }_{C G} N(z, p)\right.$ $=\lim _{M=\infty} U^{M}(z)$, where $U^{M}(z)$ is a harmonic function in G such that $U^{M}(z)=\min (M, N(z, p))$ on $C G$ and $U^{M}(z)$ has M.D.I. (Minimal Dirichlet Integral) over G]. If $N(z, p)>_{C G} N(z, p)$, we say that G contains p N-approximately and denote it by $G^{\mathcal{N}} p$.

Let $G(z, p)$ be a Green's function of R. Put $K(z, p)=\frac{G(z, p)}{G\left(p_{0}, p\right)}$, where p_{0} is a fixed point. We suppose that K-Martin's topology is defined in $R+B^{K}$ by use of $K(z, p)$, where B^{K} is the ideal boundary. Let B_{1}^{K} be the set of K-minimal boundary points of R. Then B_{0}^{K} $B^{K}-B_{1}^{K}$ is an F_{σ} set of harmonic measure zero. Let G be a domain in R and let $K_{C G}(z, p)$ be the least positive superharmonic function in R with $K_{C G}(z, p)=K(z, p): p \in B_{1}^{K}$ on $C G$. If $K(z, p)>K_{C G}(z, p)$, we say that G contains $p K$-approximately and denote it by $G^{\tilde{K}} p$. Then we have the following

Lemma 1. a). 1). If $G_{i}{ }^{N} p: i=1,2, \cdots, l, \bigcap^{\ell} G_{i} \stackrel{N}{\ni} p$. 2). If $G^{N} \not \ni p$, $(\operatorname{int} C G) \stackrel{N}{\ni} p .3) . E\left[z \in R+B^{N}, \operatorname{dist}(z, p)<\frac{1}{n}\right]=v_{n}(p)^{\ni} p$.

[^0]b). 1). If $G_{i}{ }^{K} p: i=1,2, \cdots, l, \bigcap^{\imath} G_{i}{ }^{K} p$.
2). If $G{ }^{\frac{K}{\ni}} p$, (int $C G \stackrel{K}{\ni} p$.
3). $E\left[z \in R+B^{K}, \operatorname{dist}(z, p)<\frac{1}{n}\right]=v_{n}(p)^{\frac{K}{\ni}} p$.

Proof of a). Case 1). $\quad p$ is singular: $\operatorname{Cap}(p)>0$. In this case the proof of a) is given in Theorem 8 of S.

Case 2). $\quad p$ is not singular: $\operatorname{Cap}(p)=0$ and $p \in B_{1}^{N}$. At first we show ${ }_{p}\left({ }_{c G} N(z, p)=0\right.$. Since p is one point $\in B_{1}^{N},{ }_{p}\left({ }_{c G} N(z, p)\right)=a_{0} N(z, p)$: $a_{0} \geqq 0$. Since $\operatorname{Cap}(p)=0, N(z, p)-{ }_{p}\left({ }_{c G} N(z, p)\right)=U_{0}(z)$ is superharmonic by Theorem 6 of P and by mass of $U_{0}(z) \leqq 1$ we have $D(\min (M, U(z))$ $\leqq 2 \pi M$. Put

$$
\begin{aligned}
& { }_{c G} N(z, p)=a_{0} N(z, p)+U_{0}(z),{ }_{p} U_{0}(z)=a_{1} N(z, p), \\
& \quad U_{n}(z)=a_{n+1} N(z, p)+U_{n+1}(z), \text { where }{ }_{p}\left(U_{n}(z)\right)=a_{n+1} N(z, p): n=1,2, \cdots
\end{aligned}
$$

Then $D\left(\min \left(M, U_{n}(z)\right) \leqq 2 \pi M, U_{n}(z)\right.$ is superharmonic, $U_{n}(z) \downarrow U_{\infty}(z)$ and $U_{\infty}(z)$ is also superharmonic by Theorem 4 of P. By $N(z, p)$ $\geqq{ }_{c G} N(z, p)=\sum^{\infty} a_{i} N(z, p)+U_{\infty}(z)$ we have $\sum^{\infty} a_{i} \leqq 1$ and $\lim _{n} a_{n}=0$ and

$$
{ }_{p}\left(U_{\infty}(z)\right)=\lim a_{n} N(z, p)=0 .
$$

Suppose $G \stackrel{N}{\ni} p$. Then $N(z, p)>_{G G} N(z, p)$ and $\sum^{\infty} a_{i}<1$, whence $U_{\infty}(z)>0$. Now $U_{\infty}(z)=\left(1-\sum^{\infty} a_{i}\right) N(z, p)$ on $C G$ and $U_{\infty}(z)$ is superharmonic. On the other hand, ${ }_{C G} N(z, p)$ is the least positive superharmonic function with ${ }_{{ }_{G}} N(z, p)=N(z, p)$ on $C G$. Hence $U_{\infty}(z)$ $\geqq\left(1-\sum^{\infty} a_{i}\right)_{C G} N(z, p)$ and ${ }_{p}\left({ }_{c G} N(z, p)\right)=0$. Suppose $G_{i}{ }^{N} p$. Then ${ }_{p}\left(c G_{i} N(z, p)\right)=0$ and ${ }_{p}\left(\sum_{i} c c_{i} N(z, p)\right) \leqq \sum_{i}{ }_{p}\left(c G_{i} N(z, p)\right)=0$. Hence $N(z, p)$ $={ }_{p} N(z, p)>_{p}\left(\bar{\Sigma}_{i} G_{i} N(z, p)\right)$, whence $N(z, p)>_{\Sigma \sigma_{i}} N(z, p)$. Thus $\bigcap^{i} G_{i}{ }^{N} p$. If $G \stackrel{N}{\ni} p,{ }_{p}\left(c a \cap{ }_{p} N(z, p)\right) \leqq{ }_{p}\left({ }_{c G} N(z, p)\right)=0$. Similarly by $\left.\operatorname{int} C G{ }^{N} p_{p}(G \cap p) N(z, p)\right)$ $=0$. Now $N(z, p)={ }_{p} N(z, p)={ }_{p \cap c G} N(z, p)+{ }_{p \cap G} N(z, p)=0$. This is a contradiction. Hence we have a). 2). The proof of a). 3) is given in Theorem 19 of S.

Proof of b). Let $U(z)$ be a positive superharmonic function and let F be a closed set of B^{K}. Then $U(z)-U_{F}(z)$ is superharmonic i.e. $U(z)-U_{p}(z)$ is superharmonic (F is not necessarily a closed set of harmonic measure zero). Hence we have b). 1 and b). 2 similarly as a). The proof of b). 3) is given in Theorem 3 of S.

Let $w=f(z): z \in R$ be an analytic function whose values fall on the w-Riemann sphere. If the spherical area $A(f(z))$ of the image of R by $w=f(z)$ is finite, we call $f(z)$ a function of D-type. Map the universal covering surface R^{∞} of R onto $|\zeta|<1$ conformally by $z=z(\zeta)$. If the function $w=f(z(\zeta))=f(\zeta)$ has angular limits a.e. on $|\zeta|=1$, we call $f(z)$ a function of F-type. It is well known, if $w=f(z)$ is of bounded type (the characteristic function of $T(z)$ of $f(z)$ is
bounded), $T(\zeta) \leqq T(z)^{3)}$ and $w=f(\zeta)$ is of F-type, where $T(\zeta)$ is the characteristic of $w=f(\zeta)$. Put $M^{N}(p)=\bigcap \overline{f\left(G_{i}\right)}: G_{i}{ }^{N} p$ and $M^{K}(p)$ $=\bigcap \overline{f\left(G_{i}\right)}: G_{i}{ }^{K} p$, where the intersection is taken over all domains containing $N(K)$-approximately. We see that by Lemma 1 that $M^{N}(p)\left(M^{K}(p)\right)$ is closed and consists of only one point or of a continuum. Then we have the following

Theorem a). Denote by $S^{N}\left(S^{K}\right)$ the set of points such that $M^{N}(p)\left(M^{K}(p)\right)$ is a continuum. Then if $w=f(z)$ is of D-type, $S^{N}+S_{0}^{N}$ does not contain any closed set of positive capacity.
b). If $w=f(z)$ is of F-type, $S^{K}+B_{0}^{K}$ does not contain any closed set of positive harmonic measure.

Lemma 2. a). Let G and $G^{\prime}: G \supset G^{\prime}$ be domains such that $D\left(\omega^{*}(z)\right)<\infty$, where $\omega^{*}(z)$ is a harmonic function in $G-G^{\prime}$ such that $\omega^{*}(z)=0$ on $\partial G, \omega^{*}(z)=1$ on ∂G^{\prime} and $\omega^{*}(z)$ has M.D.I. Let F be a closed subset of B^{N}. Then we can define C.P. of $F \cap G^{\prime}$ relative to $G: \omega\left(F \cap G^{\prime}, z, G\right)=\lim \lim \omega_{n, n+i}(z)$, where $\omega_{n, n+i}(z)$ is a harmonic function in $\left(G \cap R_{n+i}\right)-\left(F_{n} \cap G^{\prime}\right): F_{n}=E\left[z \in R+B^{N}\right.$, dist $\left.(F, z) \leqq \frac{1}{n}\right]$ such that $\omega_{n, n+i}(z)=0$ on $\partial G \cap R_{n+i}, \frac{\partial}{\partial n} \omega_{n, n+i}(z)=0$ on $\left(\partial R_{n+i} \cap G\right)-\left(F_{n} \cap G^{\prime}\right)$, $\omega_{n, n+i}(z)=1$ on $F_{n} \cap G^{\prime}$. If $\omega\left(F \cap G^{\prime}, z, G\right)>0, G$ contains at least one point $p \in F \cap B_{1}^{N} N$-approximately.
b). Let G be a domain and let F be a closed set of B^{K}. If $w(z, F, G)=\lim _{n} \lim _{i} w_{n, n+i}(z)>0, G$ contains at least one point $p \in B_{1}^{K} \cap F$ K-approximately, where $w_{n, n+i}(z)$ is a harmonic function in $\left(G \cap R_{n+i}\right)$ $-F_{n}$ such that $w_{n, n+i}(z)=0$ on $\left(\partial G \cap R_{n+i}\right)+\partial R_{n+i}-F_{n}$ and $w_{n, n+i}(z)=1$ on $F_{n}=E\left[z \in R+B^{K}\right.$, $\left.\operatorname{dist}(z, F) \leqq \frac{1}{n}\right]$.

Proof of a). For the simplicity put $\omega(z)=\omega\left(F \cap G^{\prime}, z, G\right)$. Assume $\omega(z)>0$. Put $D=D(\omega(z))(<\infty)$. Then $\omega(z)$ has M.D.I. over $\Omega=E\left[z, \delta_{1}<\omega(z)<\delta_{2}\right]: 0<\delta_{1}<\delta_{2}<1$ and there exists a regular niveau curve C_{δ} for almost all $\delta: C_{\delta}=E[z, \omega(z)=\delta]$. Put $U(z)={ }_{c G} \omega(z, F)$ $(\omega(F, z)$ is C.P. of F). Then $U(z)$ has M.D.I. over G, whence $U(z)$ has M.D.I. over Ω. Hence $U(z)=\lim U_{n}(z)$, where $U_{n}(z)$ is a harmonic function in $R_{n} \cap \Omega$ such that $U_{n}(z)=U(z)$ on $C_{\dot{\delta}_{i}}(i=1,2) \frac{\partial}{\partial n} U_{n}(z)=0$ on $\Omega \bigcap \partial R_{n}$, where $C_{\delta_{i}}$ is regular. Then by the Green's formula

$$
\int_{\sigma_{\delta_{1}}} U_{n}(z) \frac{\partial}{\partial n} \omega_{n}(z) d s=\int_{\sigma_{\delta_{\delta_{2}}}} U_{n}(z) \frac{\partial}{\partial n} \omega_{n}(z) d s,
$$

where $\omega_{n}(z)$ is a harmonic function in $\Omega \bigcap R_{n}$ such that $\omega_{n}(z)=\delta_{i}$ on

[^1]$C_{\delta_{i}}$ and $\frac{\partial}{\partial n} \omega_{n}(z)=0$ on $\partial R_{n} \cap \Omega$ and $\lim _{n} \omega_{n}(z)=\omega(z)$. Let $n \rightarrow \infty$. Then by Theorem 3 of P we have $\int_{c_{\delta_{1}}} U(z) \frac{\partial}{\partial n} \omega(z) d s=\int_{c_{\delta_{2}}} U(z) \frac{\partial}{\partial n} \omega(z) d s$, $D=\int_{c_{\delta_{i}}} \frac{\partial}{\partial n} \omega(z) d s: i=1,2$. Now $U(z)<1$ in $R-R_{0}$, whence there exists a positive number ε_{0} such that
\[

$$
\begin{aligned}
& \int_{c_{\delta_{1}}} U(z) \frac{\partial}{\partial n} \omega(z) d s<D\left(1-\varepsilon_{0}\right) \text {. Let } \delta_{2} \rightarrow 1 \text {. Then } \\
& \int_{\delta_{\delta_{2}}} U(z) \frac{\partial}{\partial n} \omega(z) d s<D\left(1-\varepsilon_{0}\right)<\int_{\delta_{\delta_{2}}} \omega(z) \frac{\partial}{\partial n} \omega(z) d s=D_{\delta_{2}} \text { for } \delta_{2}>1-\varepsilon_{0} .
\end{aligned}
$$
\]

Whence

$$
{ }_{c G} \omega(F, z)<\omega\left(F \cap G^{\prime}, z, G\right) \leqq \omega(F, z) \text { in } G .
$$

Now by Theorem 13 of $P \omega(F, z)$ is represented by a positive mass on $F \cap B_{1}^{N}: \omega(F, z)=\int N(z, p) d \mu(p)$. And by Theorem 4 of P ${ }_{(C G)_{n}} \omega(F, z) \uparrow \omega(F, z)$, where $(C G)_{n}=C G \cap R_{n}$. Since $N(z, p)$ is uniformly continuous with respect to p in every compact set not containing p, $N\left(z, p_{i}\right) \rightarrow N(z, p)$ on $(C G)_{n}$ as $p_{i} \rightarrow p$. Now $N\left(z, p_{i}\right)$ and $N(z, p)$ are harmonic in $R-R_{0}-(C G)_{n}$, whence by the $\stackrel{*}{m}$ aximum principle

$$
\max _{z \in R-R_{0}-(C G)_{n}}\left|N\left(z, p_{i}\right)-N(z, p)\right| \leqq \max _{z \in \partial(C G)_{n}}\left|N\left(z, p_{i}\right)-N(z, p)\right| .
$$

Hence we can find a sequence of linear forms $V_{m}(z)=\sum^{m} c_{i} N\left(z, p_{i}\right)$: $c_{i}>0: m=1,2, \cdots$ such that $V_{m}(z) \rightarrow \omega(F, z)$ uniformly on $(C G)_{n}$ and ${ }_{(C G)_{n}} V_{m}(z)=\sum^{m} c_{i(G G) n} N(z, p) \rightarrow \int{ }_{(C G)_{n}} N(z, p) d \mu(p)$ uniformly on $(C G)_{n}$ as $m \rightarrow \infty$, whence by the $\stackrel{*}{\text { maximum principle }}{ }_{(C G)_{n}} V_{m}(z) \rightarrow \int_{(C G)_{n}} N(z, p) d \mu(p)$ not only on $(C G)_{n}$ but also on $(C G)_{n}+\left(R-R_{0}-(C G)_{n}\right)=R-R_{0}$, because ${ }_{(C G) n}\left(\sum^{m} c_{i} N\left(z, p_{i}\right)\right)=\sum^{m} c_{i(G G) n} N\left(z, p_{i}\right)$ is clear. Let $m \rightarrow \infty$. Then

$$
{ }_{(C G)_{n}} \omega(F, z)_{(C G)_{n}}\left(\int N(z, p) d \mu(p)\right)=\int_{(C G)_{n}} N(z, p) d \mu(p)
$$

Let $n \rightarrow \infty$. Then by ${ }_{(c G)} N(z, p) \uparrow{ }_{c G} N(z, p)$ we have ${ }_{c G} \omega(F z$, $=\int_{c G} N(z, p) d \mu(p)$ and

$$
\omega(F, z)=\int N(z, p) d \mu(p)>\int_{C G} N(z, p) d \mu(p)={ }_{c G} \omega(F, z) .
$$

Hence there exists at least a point $p \in F \cap B_{1}^{N}$ such that $N(z, p)>{ }_{c G} N(z, p)$, i.e. $G \stackrel{N}{\ni} p$.

Proof of $b)$. Assume $w(F, z, G)>0$. Put $w(\partial G, z, G)=1-w(z, G$ $\left.\cap B^{K}, G\right)(\leqq 1-w(F, z, G))$. Put $G_{1-\varepsilon}=E[z \in G, w(F, z, G)<1-\varepsilon]$ and $G_{\varepsilon}^{\prime}=E[z \in G, w(\partial G, z, G)>\varepsilon]: \frac{1}{3}>\varepsilon>0$. Then by P.H. 3 of $P w(F$ $\cap G_{1-\varepsilon}, z, G,=0=w\left(G_{\varepsilon}^{\prime} \cap B^{K}, z, G\right) \geqq w\left(F \cap G_{s}^{\prime}, z, G\right)$. Hence by $w\left(F \cap\left(G_{1-\varepsilon}\right.\right.$ $\left.\left.+G_{\varepsilon}^{\prime}\right), z, G\right) \leqq w\left(F \cap G_{1-\varepsilon}, z, G\right)+w\left(F \cap G_{\varepsilon}^{\prime}, z, G\right)=0$ and by $w\left(F \cap\left(C\left(G_{1-\varepsilon}\right.\right.\right.$
$\left.\left.\left.+G_{\mathrm{s}}^{\prime}\right)\right), z, G\right)+w\left(F \cap\left(G_{1-e}, z, G_{\mathrm{s}}^{\prime}\right), G\right) \geqq w(F, z, G)>0$ we have $w\left(F \cap C G_{1-\mathrm{e}}\right.$ $\left.\cap C G_{e}^{\prime}, z, G\right)>0$ and $C G_{1-\varepsilon} \cap C G_{s}^{\prime}$ is non void. Whence $w(F, z)-w_{c G}(F, z)$ $\geqq w(F, z, G)-w(\partial G, z, G) \geqq 1-2 \varepsilon>0$ in $C G_{1-\varepsilon} \cap C G_{\varepsilon}^{\prime}$. Hence $w(F, z)$ $\geqq w_{C G}(F, z)$. Thus we have (b) as above.

We denote by $\delta M(p)$ the spherical diameter of $M(p)$. Let C be a circle in the w-sphere. Then $f^{-1}(C)$ consists of enumerably infinite number of domains. Then by the definition of $\delta M(p)$ we have easily the following

Lemma 3. If dia $(C)<\delta_{0}$, any domain of $f^{-1}(C)$ does not contain $N($ or $K)$ approximately a point such that $\delta M^{N}(p)\left(\delta M^{K}(p)\right)>\delta_{0}$.

We have by Lemma 1 the following
Lemma 4. If $M(p)=q$ (one point), there exists an asymptotic path L tending to p on which $f(z) \rightarrow q$ as $z \rightarrow p$.

Lemma 5. Let G be a domain in R. Then $E\left[p \in B_{1}^{L}, p \notin G\right]$ is a G_{o} set in B_{1}^{L}. Let $C_{n, i}(i=1,2, \cdots)$ be a system of spherical circles with radius $\frac{1}{n}$ such that any circle with radius $\frac{1}{3 n}$ is contained in a certain $C_{n, i}$. Put $T_{n, i}^{L}=E\left[p \in B_{1}^{L}, p \stackrel{L}{\ddagger}\right.$ any component of $\left.f^{-1}\left(C_{n, i}\right)\right]$ and $S_{n}^{L}=E\left[p \in B_{1}^{L}, \delta M(p) \geqq \frac{1}{n}\right]$. Then $\bigcup_{n} S_{n}^{L}=\bigcup_{n}\left(\bigcap_{i} T_{n, i}^{L}\right)$ is a $G_{\delta \sigma}$ set in B_{1}^{L}, where $L=N$ or K.

Proof. By the compactness of $(C G)_{n}(C G)_{n} N\left(z, p_{i}\right) \rightarrow_{(O G)_{n}} N(z, p)$ as $p_{i} \rightarrow p$ and by ${ }_{(c G)_{n}} N(z, p) \uparrow{ }_{c G} N(z, p)$ as $N \rightarrow \infty, N(z, p)-{ }_{C G} N(z, p)$ is upper semicontinuous and $E\left[p \in B_{1}^{L}, N(z, p)-{ }_{c G} N(z, p)=0\right]$ is a $G_{\dot{\delta}}$ set in B. Now $f^{-1}\left(C_{n, i}\right)$ consists of at most enumerably infinite number of domains. Hence $T_{n, i}^{N}$ is also a G_{δ} set. Clearly by $\operatorname{dia}\left(C_{n, i}\right)=\frac{1}{n}$ $S_{n} \subset \bigcap_{i} T_{3 n, i}$. Next assume $p \notin S_{3 n}^{N}$. Then $\delta M(p)<\frac{1}{3 n}$ and there exists a domain G such that $\operatorname{dia}(f(G))=\frac{1}{3 n}, G_{n, i}{ }^{N} p$ and a circle $C_{n, i} \supset f(G)$. Hence $p \stackrel{N}{\oplus} \bigcap_{i} T_{n, i}$ and $S_{3 n}^{N} \supset \bigcap_{i} T_{n, i}^{N}$ and $\cup S_{n}^{N}=\bigcup_{n}\left(\bigcap_{i} T_{n, i}\right)$. Above facts for $K(z, p)$ are proved similarly.

Proof of the theorem. Proof of a). Assume that there exists a number n_{0} such that $\bigcap_{i} T_{n_{0}, i}^{N}+B_{0}^{N}$ has a closed set F of positive capacity. Let C_{i} be a circle with radius $\frac{1}{5 n_{0}}$ such that $\sum_{i} \operatorname{int} C_{i}$ covers the w-sphere. Then by $\sum_{i, j} G_{i, j} \supset R-R_{0}$ ($G_{i, j}$ is a component of $\left.f^{-1}\left(C_{i}\right)\right)$ and by $\sum_{i, j} \omega\left(G \cap G_{i, j} \cap F^{\prime}, z\right) \geqq \omega(F, z)$, there exists at least one domain G of $G_{i, j}$ such that $\omega(F \cap G, z)>0$, where $\omega(F \cap G, z)$ is C.P. of $F \cap G$. Let \widetilde{C}_{i} be a spherical circle with the same centre as that of C_{i} and with radius $\frac{2}{5 n_{0}}$. Now by a rotation of the w-sphere we
can suppose without loss of generality that the closure of \widetilde{C}_{i} does not contain the north pole of the sphere. Let \widetilde{G} be a component of $f^{-1}\left(\widetilde{C}_{i}\right)$ containing G. Let $U(z)$ be a continuous function in the w sphere snch that $U(z)$ is harmonic in $\widetilde{C}_{i}-C_{i}, U(z)=0$ on the complementary set of \widetilde{C}_{i} and $U(w)=1$ on the closure of C_{i}. Then \max $\left(\left|\frac{\partial U(w)}{\partial u}\right|,\left|\frac{\partial U(w)}{\partial v}\right|\right)=M<\infty: w=u+i v$. Consider the function $U(z)$ $=U\left(f^{-1}(w)\right): z \in R-R_{0}$. Then $D(U(z))<M^{2} A K$, where A is the spherical area of the image of R and $K=$ maximum of $\frac{\text { area element }}{\text { spherical area element }}$ in $\overline{\widetilde{C}}_{i}$ (clearly $K<\infty$). Let $\omega_{n}(z)$ be a continuous function in $R-R_{0}$ such that $\omega_{n}(z)$ is harmonic in $R-R_{0}-\left(F_{n} \cap G\right)\left(F_{n}=E\left[z \in R+B^{N}\right.\right.$, dist $\left.\left.(z, F) \leqq-\frac{1}{n}\right]\right), \omega_{n}(z)=0$ on $\partial R_{0}, \omega_{n}(z)=1$ on $\left(F_{n} \cap G\right)$ and has M.D.I. Then there exists a number n^{\prime} such that $D\left(\omega_{n}(z)\right)<L<\infty$ for $n \geqq n^{\prime}$ and $0<\omega(F \cap G, z)=\lim _{n} \omega_{n}(z)$. Put $\widetilde{\omega}_{n}(z)=\min \left(U(z), \omega_{n}(z)\right)$. Then $\widetilde{\omega}_{n}(z)=0$ on $\partial R_{0}+\partial \widetilde{G}, \widetilde{\omega}_{n}(z)=1$ on $\left(F_{n} \cap G\right)$ and $D\left(\widetilde{\omega}_{n}(z)\right) \leqq D\left(\omega_{n}(z)\right)+D(U(z))<L^{\prime}$ $<\infty$ for $n \geqq n^{\prime}$. Let $\widetilde{\widetilde{\omega}}_{n}(z)$ be a harmonic function in $\widetilde{G}-\left(F_{n}^{\prime} \cap G\right)$ such that $\widetilde{\widetilde{\omega}}_{n}(z)=0$ on $\partial \widetilde{G}, \widetilde{\widetilde{\omega}}(z)=1$ on $F_{n} \cap G$ and has M.D.I. Then by the Dirichlet principle

$$
0<D(\omega(F \cap G, z)) \leqq D\left(\widetilde{\widetilde{\omega}}_{n}(z)\right) \leqq D\left(\widetilde{\omega}_{n}(z)\right)<L^{\prime} \quad \text { for } n \geqq n^{\prime} .
$$

Hence $\lim _{n} \widetilde{\widetilde{\omega}}_{n}(z)=\omega(F \cap G, z, \widetilde{G})>0$. Hence by Lemma $2 \widetilde{G}$ contains at least one point $p \in F \cap B_{1}^{N} N$-approximately, on the hand, by Lemma 3 G does not contain any point of F by $\operatorname{dia}(\widetilde{C})=\frac{4}{5 n_{0}}<\delta M(p) \geqq \frac{1}{n_{0}}$. This is a contradiction. Hence we have a) by Lemma 5.

Proof of b). Assume $\bigcap_{i} T_{n_{0}, i}^{K}+B_{0}^{K}$ has a closed set F of positive harmonic measure. Then similarly as above, we can find domains G and \widetilde{G} such that $w(F \bigcap G, z)>0$ and $\operatorname{dist}(f(G), f(\partial \widetilde{G})) \geqq \frac{1}{5 n_{0}}>0$.
Since $f(\zeta)$ is of F-type, we have mes $E>0$ by $w(F \cap G, z)>0$, where E is the set on $|\zeta|=1$ on which $f(\zeta)$ has angular limits contained in $\overline{f(} \bar{G})$ and $w(F \cap G, z)=1$ a.e. on E. Now $f(\partial \widetilde{G})$ does not tend to E by $\operatorname{dist}(f(G), f(\widetilde{G}))>0$ and we see $\omega(F \cap G, z, \widetilde{G})>0$. Thus we have b) similarly as a).

[^0]: 1) Z. Kuramochi: Potentials on Riemann surfaces; Singular points: Journ. Sci. Hokkaido Univ. 14 (1962).
 2) We suppose that ∂G consists of at most enumerably infinite number of analytic curves clustering nowhere in R.
[^1]: 3) Z. Kuramochi: Dirichlet problem on Riemann surfaces. 1, Proc. Japan Acad., 30, 731-735 (1954).
