39. On a Variant of Hausdorff Measure-Bend

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Z. SUETUNA, M.J.A., May 12, 1962)

1. Conditions for countable straightenableness and countable rectifiability. The present article is a continuation of our recent notes which have appeared in these Proceedings. The underlying space \mathbf{R}^m will be assumed throughout to be at least two-dimensional.

We begin by stating the following result which is analogous to Theorem (9.1) on p. 233 of Saks [6] and which may be established as for that theorem with the aid of the category theorem of Baire.

THEOREM. In order that a curve which is continuous on a nonvoid closed set E of real numbers, be countably straightenable [or countably rectifiable] on E (see [5] §4 and [1] §2), it is necessary and sufficient that every nonvoid closed subset of E should contain a portion on which the curve is straightenable [rectifiable].

There is another condition sufficient for countable rectifiability which is closely related to Theorem (10.8) of Denjoy given on p. 237 of Saks [6]. For this purpose we have to introduce a few definitions. A curve φ situated in \mathbb{R}^m will be said to be conic on the right [on the left] at a point $t_0 \in \mathbb{R}$, iff (i.e. if and only if) it is possible to choose a number δ of the interval $0 < \delta < \pi/2$ and a nonvanishing vector pof the space \mathbb{R}^m , in such a manner that whenever a closed interval I of length $|I| < \delta$ has t_0 for its left-hand [right-hand] extremity and moreover the increment $\varphi(I)$ of the curve φ over I does not vanish, the angle between $\varphi(I)$ and p is less than $(\pi/2) - \delta$. We shall further term φ to be unilaterally conic at t_0 iff it is conic on the side (right or left) at t_0 .

Our condition may now be set forth in the following form.

THEOREM. If at every point t of a linear set E, except perhaps at the points of a countable subset, a curve φ is unilaterally conic, then φ is countably rectifiable on E.

PROOF. Let A be the set of the points of \mathbf{R} at which the curve φ is conic on the right. It is certainly enough to show that φ is countably rectifiable on A. Consider the rational vectors (i.e. having rational components) of \mathbf{R}^m other than the zero vector. Noting that they are countable in number, we arrange all of them in a distinct infinite sequence p_1, p_2, \cdots . For each natural number n we denote by A_n the set of the points $t \in \mathbf{R}$ such that $|\varphi(t)| < n$ and further that, for every closed interval I whose length is <1/n and whose left-

Ka. ISEKI

hand extremity is t, the condition $\varphi(I) \neq 0$ implies the inequality $\varphi(I) \diamond p_n < (\pi/2) - (1/n)$. We then obtain easily $A = A_1 \cup A_2 \cup \cdots$, and so the proof reduces to ascertaining that φ is countably rectifiable on each A_n . For later purpose we remark in passing that for every point t of A_n we have $|\varphi(t)p_n| \leq |\varphi(t)| \cdot |p_n| < n |p_n|$, where $\varphi(t)p_n$ means the scalar product of $\varphi(t)$ and p_n .

Keeping *n* fixed, let us write $A_n^{(k)} = A_n \cdot (k/n, (k+1)/n]$ for each integer *k* (positive or not), so that A_n is the union of the sets $A_n^{(k)}$ for all *k*. If now *J* is any closed interval whose extremities belong to $A_n^{(k)}$ (and a fortiori to A_n), we find at once, in view of the definition of the set A_n , that $|\varphi(I)| \cdot |p_n| \cdot \sin(1/n) \leq \varphi(I)p_n$. Hence, however we may extract from $A_n^{(k)}$, where *k* is fixed, a finite sequence of points $t_1 < \cdots < t_j$, we have

 $L(\varphi; \{t_1, \cdots, t_j\}) \cdot |p_n| \cdot \sin(1/n) \leq \{\varphi(t_j) - \varphi(t_1)\} p_n < 2n |p_n|,$ the last step being effected by the inequality $|\varphi(t)p_n| < n |p_n|$ already mentioned. This shows us that the length $L(\varphi; \{t_1, \cdots, t_j\})$ is bounded upwards. Since the sequence $t_1 < \cdots < t_j$ is arbitrary, it follows immediately that the curve φ is rectifiable on the set $A_n^{(k)}$. This implies finally the countable rectifiability of φ over A_n , and the proof is complete.

REMARK. It might be possible to obtain a result similar in its character to our second theorem and stating a sufficient condition for a curve (not necessarily continuous) to be Borel-rectifiable ([2]\$1) over a linear set. On the other hand it is permitted to replace in our first theorem the word "countably" by "Borel" throughout. In point of fact, countable straightenableness [countable rectifiability] of a curve over a linear set on which it is continuous is equivalent to Borel straightenableness [Borel rectifiability] of the curve over the same set (see [5]\$4).

2. A case in which the Hausdorff and reduced measure-bends of a curve coincide on a set.

THEOREM. If a curve φ is B-straightenable on a set E, then $\Pi(\varphi; E) = \Upsilon(\varphi; E).$

PROOF. Since, in abridged notations, $\Pi(E) \leq \Upsilon(E)$ by the theorem of [5]§2, we need only derive the converse inequality. The set E, which we may assume nonvoid, admits by hypothesis an expression as the union of a disjoint sequence \varDelta of bounded sets which are relatively Borel in E and on each of which φ is straightenable. We then have both $\Pi(E) = \Pi(\varDelta)$ and $\Upsilon(E) = \Upsilon(\varDelta)$, since the Hausdorff and reduced measure-bends of a curve are always outer measures in the sense of Carathéodory. Without loss of generality we may therefore suppose E bounded and φ straightenable on E.

We inspect now the proof for the lemma of [3]§1 and find that

it is possible to decompose E into a finite disjoint sequence of sets, say $\Delta_0 = \langle E_1, \cdots, E_n \rangle$, such that every E_i is a relative Borel set in E $(i=1,\cdots,n)$ and fulfils the inequality $\Omega(E_i) < \pi/2$. (It should be noticed that the boundedness of φ on E is unnecessary for the construction of such a sequence Δ_0 .) It follows that $\Pi(E) = \Pi(\Delta_0)$ and similarly for Υ . We may thus assume in addition that $\Omega(E) < \pi/2$.

This being so, express E in any manner as the join of a sequence Θ of its subsets. Noting that $\Omega(N) < \pi/2$ when N is a set in Θ , we apply the theorem of [5]§3 and obtain $\Phi(N) = \omega(\varphi[N]) = \Omega(N)$ for each N, so that $\Phi(\Theta) = \Omega(\Theta) \ge \Upsilon(\Theta)$. Remember now the definition of Hausdorff measure-bend (see [5]§2), and we find at once $\Pi(E) \ge \Upsilon(E)$, which completes the proof.

3. A quantity resembling Hausdorff measure-bend. Given a curve φ , we shall retain the notation $\Phi(E) = \omega(\varphi[E])$ at the end of the foregoing section, E being any linear set. Similarly we shall write $\Phi_0(E) = \omega_0(\varphi[E])$, where $\omega_0(X)$ denotes for any $X \subset \mathbb{R}^m$ the outer bend of X (see [2]§5).

In [5]§2 we have defined $\Pi(\varphi; E)$ by a limiting process, with the aid of the set-function ω . If we now use ω_0 in place of ω and perform the same limiting process, we obtain a geometric quantity analogous to $\Pi(\varphi; E)$. This will be denoted by $\Pi_0(\varphi; E)$. In other words, given a positive number ε , we express E as the union of an arbitrary sequence Δ of sets with diameters less than ε and consider the infimum of $\Phi_0(\Delta)$ for all choices of Δ ; the limit, as $\varepsilon \to 0$, of this infimum is then $\Pi_0(\varphi; E)$ by definition. It is easily verified that $\Pi_0(\varphi; E)$, qua function of E, is an outer Carathéodory measure which vanishes when E is countable.

As we shall see below, there are cases in which $\Pi_0(\varphi; E)$ turns out equal to $\Pi(\varphi; E)$. But we are not in a position to decide whether or not the two quantities are completely identical in all cases.

LEMMA. We have $\Pi_0(\varphi; E) \ge \Pi(\varphi; E)$ for any curve φ and any set E.

PROOF. Suppose $\Pi_0(\varphi; E)$ finite and consider any positive number ε . It is plainly possible to express E as the join of an infinite sequence of sets E_1, E_2, \cdots with diameters less than ε , such that $\sum \Phi_0(E_n) < A_0 + \varepsilon$, where and subsequently A_0 is short for $\Pi_0(\varphi; E)$ and n ranges over $1, 2, \cdots$. For each n we can express the set E_n as the join of a sequence Δ_n of sets, in such a manner that $\sum \Phi(\Delta_n) < A_0 + \varepsilon$. But it is evident that $\Pi_{\varepsilon}(\varphi; E) \leq \sum \Phi(\Delta_n)$, with the same meaning for the left-hand side as in [5]§2. We thus get $\Pi_{\varepsilon}(\varphi; E) < A_0 + \varepsilon$. Hitherto ε has been kept fixed. We make now $\varepsilon \to 0$ and obtain at once $\Pi(\varphi; E) \leq A_0$, completing the proof.

THEOREM. If a curve φ is continuous on a set E, we have

Ka. ISEKI

$\Pi_0(\varphi; E) = \Pi(\varphi; E) \geq \Phi_0(E).$

PROOF. 1) The inequality. Let us write for short $A = \Pi(\varphi; E)$. To prove $A \ge \Phi_0(E)$, we may suppose A finite and E nonvoid. Continuity of φ on E implies that, given any $\varepsilon > 0$, each point t of E can be enclosed in an open interval I(t) with rational extremities and such that $d(\varphi[EI(t)]) < \varepsilon$. We can clearly extract from E an infinite sequence of (not necessarily distinct) points t_1, t_2, \cdots so that the intervals $I_n = I(t_n)$, where $n = 1, 2, \cdots$, together cover E. Then E is decomposed into a disjoint infinite sequence of sets E_1, E_2, \cdots which are defined by $E_1 = EI_1$ and

$$E_{n+1} = E(I_{n+1} - I_1 - \cdots - I_n) \quad (n = 1, 2, \cdots);$$

so that $d(\varphi[E_n]) < \varepsilon$ for every n and moreover $A = \sum \Pi(\varphi; E_n)$. For each n, on the other hand, E_n may be expressed as the join of a sequence Δ_n of sets such that $\Phi(\Delta_n) < \Pi(\varphi; E_n) + 2^{-n}\varepsilon$. By summing this over all n we derive $\sum \Phi(\Delta_n) < A + \varepsilon$. The last inequality shows that E admits an expression as the join of an infinite sequence of sets M_1, M_2, \cdots , such that $d(\varphi[M_n]) < \varepsilon$ for each n and that $\sum \Phi(M_n)$ $< A + \varepsilon$. Noting that the images $\varphi[M_n]$ together make up $\varphi[E]$, we let $\varepsilon \to 0$ and readily deduce $\Phi_0(E) = \omega_0(\varphi[E]) \leq A$, as required.

2) The equality of the assertion will be reduced to the inequality just established. In the first place we see by our lemma that it suffices to derive $\Pi_0(\varphi; E) \leq A = \Pi(\varphi; E)$. Given any $\varepsilon > 0$, we decompose the whole line **R** into a disjoint infinite sequence \varDelta of halfopen intervals J_1, J_2, \cdots with lengths less than ε , so that $A = \Pi(\varphi; E\varDelta)$. But we must have $\Phi_0(EJ_n) \leq \Pi(\varphi; EJ_n)$ for every *n*; for we may plainly replace the set *E* by EJ_n in our inequality $\Phi_0(E) \leq \Pi(\varphi; E)$. It follows at once that $\Phi_0(E\varDelta) \leq A$. Since ε is arbitrary, this implies directly that $\Pi_0(\varphi; E) \leq A$, which completes the proof.

THEOREM. (i) If a curve φ is B-rectifiable on a set E, we have $\Pi_0(\varphi; E) = \Pi(\varphi; E)$; (ii) if on the other hand φ is B-straightenable on E, it is B-rectifiable on E.

PROOF. re (i): By hypothesis, the set E can be covered by a disjoint sequence \varDelta of Borel sets on whose intersections with E the curve φ is rectifiable. Then $\Pi_0(\varphi; E) = \Pi_0(\varphi; E\varDelta)$ and $\Pi(\varphi; E) = \Pi(\varphi; E\varDelta)$. Without loss of generality we may therefore assume further φ rectifiable on E. This being so, consider a rectifiable curve ψ which coincides on E with φ . Then $\Pi_0(\varphi; E) = \Pi_0(\psi; E)$ and similarly for Π , so that it is enough to derive $\Pi_0(\psi; E) = \Pi(\psi, E)$. Let now H be the set of all the points of discontinuity for ψ . Since ψ is rectifiable, H must be countable. Accordingly $\Pi_0(\psi; E) = \Pi_0(\psi; E-H)$, and similarly for Π . But the curve ψ is continuous on E-H, and so $\Pi_0(\psi; E-H)$ equals $\Pi(\psi; E-H)$ in virtue of the foregoing theorem. Hence the result.

re (ii): It is sufficient to show that a curve φ is Borel-rectifiable on a set $X \subset \mathbf{R}$ whenever it is straightenable on X. For this purpose we define a linear set T as follows: a point t belongs to T iff t is a point of accumulation for X and further, given any open interval I containing t, the curve φ is unbounded on the intersection IX. Then T must be a finite set, as we found in the course of the proof for the theorem of [4]§2. On the other hand each point of $\mathbf{R}-T$ can be enclosed, by definition of T, in some open interval J with rational endpoints and such that φ is bounded on the intersection

JX. But φ is then rectifiable on JX on account of the lemma of [3]§1. Since there is only a countable infinity of open intervals with rational extremities, we conclude that φ is Borel-rectifiable on the set X.

REMARK. The part for statement (ii) of the above proof may also be attached to the following proposition: a curve is countably rectifiable on a set whenever it is countably straightenable on the same set.

4. Multiplicity function. Given a curve φ and a set $E \subset \mathbf{R}$, we define as before the multiplicity function $N(\varphi; x; E)$, where $x \in \mathbf{R}^m$, to be the number (finite or $+\infty$) of the points t of E such that $\varphi(t)=x$.

THEOREM. If E is a Borel set and φ is B-straightenable on E in the above, the function $N(\varphi; x; E)$ is measurable with respect to the outer bend ω_0 and we have the relation

$$\Upsilon(\varphi; E) = \Pi(\varphi; E) = \Pi_0(\varphi; E) = \int_{\mathbf{R}} N(\varphi; x; E) d\omega_0(x).$$

PROOF. We may restrict ourselves to the last equality, for the first two equalities are already obtained in the foregoing two sections. To shorten our notations, we shall write $\Pi_0(M)$ and N(x; M) for $\Pi_0(\varphi; M)$ and $N(\varphi; x; M)$ respectively, M being any linear set. It is obvious that if we decompose the set E into a (disjoint) sequence \varDelta of Borel sets, then $\Pi_0(E) = \Pi_0(\varDelta)$ and $N(x; E) = N(x; \varDelta)$ for every $x \in \mathbf{R}^{m}$. This, combined with part (ii) of our last theorem, allows us to assume φ rectifiable on E. There then exists a rectifiable curve coinciding on E with φ , and it follows at once that we may suppose φ itself rectifiable (over **R**). If, consequently, A denotes the set of all the points of E at which φ is discontinuous, A is countable and hence so must be its image $\varphi[A]$ also. Then N(x; A), which is zero unless $x \in \varphi \lceil A \rceil$, is measurable (ω_0) and its integral (ω_0) vanishes. where and below integration is always extended over the whole space \mathbf{R}^{m} . Further, we clearly have $\Pi_{0}(A) = 0$. On writing B = E - A, our task therefore comes to proving the measurability (ω_0) of N(x; B)and the equality $\alpha = \Pi_0(B)$, where α abbreviates the integral (ω_0) of N(x; B). We observe in passing that φ is continuous at all points

No. 5]

of the set B.

Given a natural number n, let us consider the half-open intervals $I_n^{(k)} = (k/2^n, (k+1)/2^n)$ for $k=0, \pm 1, \pm 2, \cdots$ and arrange them in a sequence Δ_n . Then Δ_{n+1} is a refinement of Δ_n for each n, and if $F_n(x)$ means the sum, for all values of k, of the characteristic functions of the images $\varphi \lceil BI_n^{(k)} \rceil$, it is seen that the functions $F_1(x), F_2(x), \cdots$ constitute a monotone non-decreasing sequence tending to N(x; B). Furthermore each $\varphi[BI_n^{(k)}]$ is an analytic set in \mathbb{R}^m , since it is a continuous image of a Borel set. Now, as is well known, analytic sets are measurable with respect to any outer Carathéodory measure. It follows that each $F_n(x)$ is measurable (ω_0) and that its integral (ω_0) tends non-decreasingly to α (see above) as $n \rightarrow +\infty$. In other words, we have $\Phi_0(B\Delta_n) \uparrow \alpha$ $(n \to +\infty)$, where we write as before $\Phi_0(M) = \omega_0(\varphi[M])$ when $M \subseteq \mathbf{R}$. But it is evident by definition of $\Pi_0(B)$ and by construction of the sequence Δ_n that $\Pi_0(B)$ cannot exceed the supremum of $\Phi_0(B\Delta_n)$ for all n. Accordingly we get $\Pi_0(B) \leq \alpha$, and thus it only remains to verify the opposite inequality. Since φ is continuous on B, the first theorem of §3 requires that $\Phi_0(M) \leq \Pi_0(M)$ whenever $M \subset B$. We therefore obtain $\Phi_0(B \varDelta_n) \leq \Pi_0(B \varDelta_n)$ $=\Pi_0(B)$ for every n. Making $n \to +\infty$ here, we deduce at once $\alpha = \lim \Phi_0(B \mathcal{A}_n) \leq \Pi_0(B)$, which completes the proof.

References

- Ka. Iseki: Further measure-theoretic results in curve geometry, PJA, 37, 515-520 (1961).
- [2] : Some results in Lebesgue geometry of curves, PJA, 37, 593-598 (1961).
- [3] ----: On the measure-bend of parametric curves, PJA, 38, 1-6 (1962).
- [4] ——: Further properties of reduced measure-bend, PJA, **38**, 105–110 (1962).
- [5] ——: Further results in Lebesgue geometry of curves, PJA, 38, 139-144 (1962).
- [6] S. Saks: Theory of the integral, Warszawa-Lwów (1937).

182