# 39. On a Variant of Hausdorff Measure-Bend 

By Kanesiroo Iseki<br>Department of Mathematics, Ochanomizu University, Tokyo<br>(Comm. by Z. Suetuna, m.J.a., May 12, 1962)

1. Conditions for countable straightenableness and countable rectifiability. The present article is a continuation of our recent notes which have appeared in these Proceedings. The underlying space $\boldsymbol{R}^{m}$ will be assumed throughout to be at least two-dimensional.

We begin by stating the following result which is analogous to Theorem (9.1) on p. 233 of Saks [6] and which may be established as for that theorem with the aid of the category theorem of Baire.

THEOREM. In order that a curve which is continuous on a nonvoid closed set $E$ of real numbers, be countably straightenable [or countably rectifiable] on $E$ (see [5]§4 and [1]§2), it is necessary and sufficient that every nonvoid closed subset of $E$ should contain a portion on which the curve is straightenable [rectifiable].

There is another condition sufficient for countable rectifiability which is closely related to Theorem (10.8) of Denjoy given on p. 237 of Saks [6]. For this purpose we have to introduce a few definitions. A curve $\varphi$ situated in $\boldsymbol{R}^{m}$ will be said to be conic on the right [on the left] at a point $t_{0} \in \boldsymbol{R}$, iff (i.e. if and only if) it is possible to choose a number $\delta$ of the interval $0<\delta<\pi / 2$ and a nonvanishing vector $p$ of the space $\boldsymbol{R}^{m}$, in such a manner that whenever a closed interval $I$ of length $|I|<\delta$ has $t_{0}$ for its left-hand [right-hand] extremity and moreover the increment $\varphi(I)$ of the curve $\varphi$ over $I$ does not vanish, the angle between $\varphi(I)$ and $p$ is less than $(\pi / 2)-\delta$. We shall further term $\varphi$ to be unilaterally conic at $t_{0}$ iff it is conic on the side (right or left) at $t_{0}$.

Our condition may now be set forth in the following form.
Theorem. If at every point $t$ of a linear set E, except perhaps at the points of a countable subset, a curve $\varphi$ is unilaterally conic, then $\varphi$ is countably rectifiable on $E$.

Proof. Let $A$ be the set of the points of $\boldsymbol{R}$ at which the curve $\varphi$ is conic on the right. It is certainly enough to show that $\varphi$ is countably rectifiable on $A$. Consider the rational vectors (i.e. having rational components) of $\boldsymbol{R}^{m}$ other than the zero vector. Noting that they are countable in number, we arrange all of them in a distinct infinite sequence $p_{1}, p_{2}, \cdots$. For each natural number $n$ we denote by $A_{n}$ the set of the points $t \in \boldsymbol{R}$ such that $|\varphi(t)|<n$ and further that, for every closed interval $I$ whose length is $<1 / n$ and whose left-
hand extremity is $t$, the condition $\varphi(I) \neq 0$ implies the inequality $\varphi(I) \diamond p_{n}<(\pi / 2)-(1 / n)$. We then obtain easily $A=A_{1} \smile A_{2} \smile \cdots$, and so the proof reduces to ascertaining that $\varphi$ is countably rectifiable on each $A_{n}$. For later purpose we remark in passing that for every point $t$ of $A_{n}$ we have $\left|\varphi(t) p_{n}\right| \leqq|\varphi(t)| \cdot\left|p_{n}\right|<n\left|p_{n}\right|$, where $\varphi(t) p_{n}$ means the scalar product of $\varphi(t)$ and $p_{n}$.

Keeping $n$ fixed, let us write $A_{n}^{(k)}=A_{n} \cdot(k / n,(k+1) / n]$ for each integer $k$ (positive or not), so that $A_{n}$ is the union of the sets $A_{n}^{(k)}$ for all $k$. If now $J$ is any closed interval whose extremities belong to $A_{n}^{(k)}$ (and a fortiori to $A_{n}$ ), we find at once, in view of the definition of the set $A_{n}$, that $|\varphi(I)| \cdot\left|p_{n}\right| \cdot \sin (1 / n) \leqq \varphi(I) p_{n}$. Hence, however we may extract from $A_{n}^{(k)}$, where $k$ is fixed, a finite sequence of points $t_{1}<\cdots<t_{j}$, we have

$$
L\left(\varphi ;\left\{t_{1}, \cdots, t_{j}\right\}\right) \cdot\left|p_{n}\right| \cdot \sin (1 / n) \leqq\left\{\varphi\left(t_{j}\right)-\varphi\left(t_{1}\right)\right\} p_{n}<2 n\left|p_{n}\right|,
$$

the last step being effected by the inequality $\left|\varphi(t) p_{n}\right|<n\left|p_{n}\right|$ already mentioned. This shows us that the length $L\left(\varphi ;\left\{t_{1}, \cdots, t_{j}\right\}\right)$ is bounded upwards. Since the sequence $t_{1}<\cdots<t_{j}$ is arbitrary, it follows immediately that the curve $\varphi$ is rectifiable on the set $A_{n}^{(k)}$. This implies finally the countable rectifiability of $\varphi$ over $A_{n}$, and the proof is complete.

Remark. It might be possible to obtain a result similar in its character to our second theorem and stating a sufficient condition for a curve (not necessarily continuous) to be Borel-rectifiable ([2]§1]) over a linear set. On the other hand it is permitted to replace in our first theorem the word "countably" by "Borel" throughout. In point of fact, countable straightenableness [countable rectifiability] of a curve over a linear set on which it is continuous is equivalent to Borel straightenableness [Borel rectifiability] of the curve over the same set (see [5]§4).
2. A case in which the Hausdorff and reduced measure-bends of a curve coincide on a set.

Theorem. If a curve $\varphi$ is $B$-straightenable on a set $E$, then

$$
\Pi(\varphi ; E)=\Upsilon(\varphi ; E)
$$

Proof. Since, in abridged notations, $\Pi(E) \leqq \Upsilon(E)$ by the theorem of [5]§2, we need only derive the converse inequality. The set $E$, which we may assume nonvoid, admits by hypothesis an expression as the union of a disjoint sequence $\Delta$ of bounded sets which are relatively Borel in $E$ and on each of which $\varphi$ is straightenable. We then have both $\Pi(E)=\Pi(\Delta)$ and $\Upsilon(E)=\Upsilon(\Delta)$, since the Hausdorff and reduced measure-bends of a curve are always outer measures in the sense of Carathéodory. Without loss of generality we may therefore suppose $E$ bounded and $\varphi$ straightenable on $E$.

We inspect now the proof for the lemma of [3]§1 and find that
it is possible to decompose $E$ into a finite disjoint sequence of sets, say $\Delta_{0}=\left\langle E_{1}, \cdots, E_{n}\right\rangle$, such that every $E_{i}$ is a relative Borel set in $E$ ( $i=1, \cdots, n$ ) and fulfils the inequality $\Omega\left(E_{i}\right)<\pi / 2$. (It should be noticed that the boundedness of $\varphi$ on $E$ is unnecessary for the construction of such a sequence $\Delta_{0}$.) It follows that $\Pi(E)=\Pi\left(U_{0}\right)$ and similarly for $\gamma$. We may thus assume in addition that $\Omega(E)<\pi / 2$.

This being so, express $E$ in any manner as the join of a sequence $\Theta$ of its subsets. Noting that $\Omega(N)<\pi / 2$ when $N$ is a set in $\Theta$, we apply the theorem of [5]§3 and obtain $\Phi(N)=\omega(\varphi[N])=\Omega(N)$ for each $N$, so that $\Phi(\Theta)=\Omega(\Theta) \geqq \gamma(\Theta)$. Remember now the definition of Hausdorff measure-bend (see [5]§2), and we find at once $\Pi(E) \geqq r(E)$, which completes the proof.
3. A quantity resembling Hausdorff measure-bend. Given a curve $\varphi$, we shall retain the notation $\Phi(E)=\omega(\varphi[E])$ at the end of the foregoing section, $E$ being any linear set. Similarly we shall write $\Phi_{0}(E)=\omega_{0}\left(\varphi[E]\right.$, where $\omega_{0}(X)$ denotes for any $X \subset \boldsymbol{R}^{m}$ the outer bend of $X$ (see [2]§5).

In [5]§2 we have defined $\Pi(\varphi ; E)$ by a limiting process, with the aid of the set-function $\omega$. If we now use $\omega_{0}$ in place of $\omega$ and perform the same limiting process, we obtain a geometric quantity analogous to $\Pi(\varphi ; E)$. This will be denoted by $\Pi_{0}(\varphi ; E)$. In other words, given a positive number $\varepsilon$, we express $E$ as the union of an arbitrary sequence $\Delta$ of sets with diameters less than $\varepsilon$ and consider the infimum of $\Phi_{0}(\Delta)$ for all choices of $\Delta$; the limit, as $\varepsilon \rightarrow 0$, of this infimum is then $\Pi_{0}(\varphi ; E)$ by definition. It is easily verified that $\Pi_{0}(\varphi ; E)$, qua function of $E$, is an outer Carathéodory measure which vanishes when $E$ is countable.

As we shall see below, there are cases in which $\Pi_{0}(\varphi ; E)$ turns out equal to $\Pi(\varphi ; E)$. But we are not in a position to decide whether or not the two quantities are completely identical in all cases.

Lemma. We have $\Pi_{0}(\varphi ; E) \geqq \Pi(\varphi ; E)$ for any curve $\varphi$ and any set $E$.

Proof. Suppose $\Pi_{0}(\varphi ; E)$ finite and consider any positive number $\varepsilon$. It is plainly possible to express $E$ as the join of an infinite sequence of sets $E_{1}, E_{2}, \cdots$ with diameters less than $\varepsilon$, such that $\sum \Phi_{0}\left(E_{n}\right)<A_{0}+\varepsilon$, where and subsequently $A_{0}$ is short for $\Pi_{0}(\varphi ; E)$ and $n$ ranges over $1,2, \cdots$. For each $n$ we can express the set $E_{n}$ as the join of a sequence $\Delta_{n}$ of sets, in such a manner that $\sum \Phi\left(\Delta_{n}\right)<A_{0}+\varepsilon$. But it is evident that $\Pi_{\varepsilon}(\varphi ; E) \leqq \sum \Phi\left(\Delta_{n}\right)$, with the same meaning for the left-hand side as in [5] 2 . We thus get $\Pi_{\varepsilon}(\varphi ; E)<A_{0}+\varepsilon$. Hitherto $\varepsilon$ has been kept fixed. We make now $\varepsilon \rightarrow 0$ and obtain at once $\Pi(\varphi ; E) \leqq A_{0}$, completing the proof.

Theorem. If a curve $\varphi$ is continuous on a set $E$, we have

$$
\Pi_{0}(\varphi ; E)=\Pi(\varphi ; E) \geqq \Phi_{0}(E)
$$

Proof. 1) The inequality. Let us write for short $A=\Pi(\varphi ; E)$. To prove $A \geqq \Phi_{0}(E)$, we may suppose $A$ finite and $E$ nonvoid. Continuity of $\varphi$ on $E$ implies that, given any $\varepsilon>0$, each point $t$ of $E$ can be enclosed in an open interval $I(t)$ with rational extremities and such that $\mathrm{d}(\varphi[E I(t)])<\varepsilon$. We can clearly extract from $E$ an infinite sequence of (not necessarily distinct) points $t_{1}, t_{2}, \cdots$ so that the intervals $I_{n}=I\left(t_{n}\right)$, where $n=1,2, \cdots$, together cover $E$. Then $E$ is decomposed into a disjoint infinite sequence of sets $E_{1}, E_{2}, \cdots$ which are defined by $E_{1}=E I_{1}$ and

$$
E_{n+1}=E\left(I_{n+1}-I_{1}-\cdots-I_{n}\right) \quad(n=1,2, \cdots) ;
$$

so that $\mathrm{d}\left(\varphi\left[E_{n}\right]\right)<\varepsilon$ for every $n$ and moreover $A=\sum \Pi\left(\varphi ; E_{n}\right)$. For each $n$, on the other hand, $E_{n}$ may be expressed as the join of a sequence $\Delta_{n}$ of sets such that $\Phi\left(\Delta_{n}\right)<\Pi\left(\varphi ; E_{n}\right)+2^{-n} \varepsilon$. By summing this over all $n$ we derive $\sum \Phi\left(\Delta_{n}\right)<A+\varepsilon$. The last inequality shows that $E$ admits an expression as the join of an infinite sequence of sets $M_{1}, M_{2}, \cdots$, such that $\mathrm{d}\left(\varphi\left[M_{n}\right]\right)<\varepsilon$ for each $n$ and that $\sum \Phi\left(M_{n}\right)$ $<A+\varepsilon$. Noting that the images $\varphi\left[M_{n}\right]$ together make up $\varphi[E]$, we let $\varepsilon \rightarrow 0$ and readily deduce $\Phi_{0}(E)=\omega_{0}(\varphi[E]) \leqq A$, as required.
2) The equality of the assertion will be reduced to the inequality just established. In the first place we see by our lemma that it suffices to derive $\Pi_{0}(\varphi ; E) \leqq A=\Pi(\varphi ; E)$. Given any $\varepsilon>0$, we decompose the whole line $\boldsymbol{R}$ into a disjoint infinite sequence $\Delta$ of halfopen intervals $J_{1}, J_{2}, \cdots$ with lengths less than $\varepsilon$, so that $A=\Pi(\varphi ; E \Delta)$. But we must have $\Phi_{0}\left(E J_{n}\right) \leqq \Pi\left(\varphi ; E J_{n}\right)$ for every $n$; for we may plainly replace the set $E$ by $E J_{n}$ in our inequality $\Phi_{0}(E) \leqq \Pi(\varphi ; E)$. It follows at once that $\Phi_{0}(E \Delta) \leqq A$. Since $\varepsilon$ is arbitrary, this implies directly that $\Pi_{0}(\varphi ; E) \leqq A$, which completes the proof.

Theorem. (i) If a curve $\varphi$ is $B$-rectifiable on a set $E$, we have $\Pi_{0}(\varphi ; E)=\Pi(\varphi ; E)$; (ii) if on the other hand $\varphi$ is B-straightenable on $E$, it is $B$-rectifiable on $E$.

Proof. re (i): By hypothesis, the set $E$ can be covered by a disjoint sequence $\Delta$ of Borel sets on whose intersections with $E$ the curve $\varphi$ is rectifiable. Then $\Pi_{0}(\varphi ; E)=\Pi_{0}(\varphi ; E \Delta)$ and $\Pi(\varphi ; E)$ $=\Pi(\varphi ; E \Delta)$. Without loss of generality we may therefore assume further $\varphi$ rectifiable on $E$. This being so, consider a rectifiable curve $\psi$ which coincides on $E$ with $\varphi$. Then $\Pi_{0}(\varphi ; E)=\Pi_{0}(\psi ; E)$ and similarly for $\Pi$, so that it is enough to derive $\Pi_{0}(\psi ; E)=\Pi(\psi, E)$. Let now $H$ be the set of all the points of discontinuity for $\psi$. Since $\psi$ is rectifiable, $H$ must be countable. Accordingly $\Pi_{0}(\psi ; E)=\Pi_{0}(\psi ; E-H)$, and similarly for $\Pi$. But the curve $\psi$ is continuous on $E-H$, and so $\Pi_{0}(\psi ; E-H)$ equals $\Pi(\psi ; E-H)$ in virtue of the foregoing theorem. Hence the result.
$r e$ (ii): It is sufficient to show that a curve $\varphi$ is Borel-rectifiable on a set $X \subset \boldsymbol{R}$ whenever it is straightenable on $X$. For this purpose we define a linear set $T$ as follows: a point $t$ belongs to $T$ iff $t$ is a point of accumulation for $X$ and further, given any open interval $I$ containing $t$, the curve $\varphi$ is unbounded on the intersection $I X$. Then $T$ must be a finite set, as we found in the course of the proof for the theorem of [4]§2. On the other hand each point of $\boldsymbol{R}-T$ can be enclosed, by definition of $T$, in some open interval $J$ with rational endpoints and such that $\varphi$ is bounded on the intersection $J X$. But $\varphi$ is then rectifiable on $J X$ on account of the lemma of [3]§1. Since there is only a countable infinity of open intervals with rational extremities, we conclude that $\varphi$ is Borel-rectifiable on the set $X$.

Remark. The part for statement (ii) of the above proof may also be attached to the following proposition: a curve is countably rectifiable on a set whenever it is countably straightenable on the same set.
4. Multiplicity function. Given a curve $\varphi$ and a set $E \subset \boldsymbol{R}$, we define as before the multiplicity function $N(\varphi ; x ; E)$, where $x \in \boldsymbol{R}^{m}$, to be the number (finite or $+\infty$ ) of the points $t$ of $E$ such that $\varphi(t)=x$.

Theorem. If $E$ is a Borel set and $\varphi$ is $B$-straightenable on $E$ in the above, the function $N(\varphi ; x ; E)$ is measurable with respect to the outer bend $\omega_{0}$ and we have the relation

$$
\Upsilon(\varphi ; E)=\Pi(\varphi ; E)=\Pi_{0}(\varphi ; E)=\int_{R} N(\varphi ; x ; E) d \omega_{0}(x) .
$$

Proof. We may restrict ourselves to the last equality, for the first two equalities are already obtained in the foregoing two sections. To shorten our notations, we shall write $\Pi_{0}(M)$ and $N(x ; M)$ for $\Pi_{0}(\varphi ; M)$ and $N(\varphi ; x ; M)$ respectively, $M$ being any linear set. It is obvious that if we decompose the set $E$ into a (disjoint) sequence $\Delta$ of Borel sets, then $\Pi_{0}(E)=\Pi_{0}(\Delta)$ and $N(x ; E)=N(x ; \Delta)$ for every $x \in \boldsymbol{R}^{m}$. This, combined with part (ii) of our last theorem, allows us to assume $\varphi$ rectifiable on $E$. There then exists a rectifiable curve coinciding on $E$ with $\varphi$, and it follows at once that we may suppose $\varphi$ itself rectifiable (over $\boldsymbol{R}$ ). If, consequently, $A$ denotes the set of all the points of $E$ at which $\varphi$ is discontinuous, $A$ is countable and hence so must be its image $\varphi[A]$ also. Then $N(x ; A)$, which is zero unless $x \in \varphi[A]$, is measurable ( $\omega_{0}$ ) and its integral ( $\omega_{0}$ ) vanishes, where and below integration is always extended over the whole space $\boldsymbol{R}^{m}$. Further, we clearly have $\Pi_{0}(A)=0$. On writing $B=E-A$, our task therefore comes to proving the measurability ( $\omega_{0}$ ) of $N(x ; B)$ and the equality $\alpha=\Pi_{0}(B)$, where $\alpha$ abbreviates the integral ( $\omega_{0}$ ) of $N(x ; B)$. We observe in passing that $\varphi$ is continuous at all points
of the set $B$.
Given a natural number $n$, let us consider the half-open intervals $I_{n}^{(k)}=\left(k / 2^{n},(k+1) / 2^{n}\right)$ for $k=0, \pm 1, \pm 2, \cdots$ and arrange them in a sequence $\Delta_{n}$. Then $\Delta_{n+1}$ is a refinement of $\Delta_{n}$ for each $n$, and if $F_{n}(x)$ means the sum, for all values of $k$, of the characteristc functions of the images $\varphi\left[B I_{n}^{(k)}\right]$, it is seen that the functions $F_{1}(x), F_{2}(x), \cdots$ constitute a monotone non-decreasing sequence tending to $N(x ; B)$. Furthermore each $\varphi\left[B I_{n}^{(k)}\right]$ is an analytic set in $\boldsymbol{R}^{m}$, since it is a continuous image of a Borel set. Now, as is well known, analytic sets are measurable with respect to any outer Carathéodory measure. It follows that each $F_{n}(x)$ is measurable ( $\omega_{0}$ ) and that its integral ( $\omega_{0}$ ) tends non-decreasingly to $\alpha$ (see above) as $n \rightarrow+\infty$. In other words, we have $\Phi_{0}\left(B \Delta_{n}\right) \uparrow \alpha(n \rightarrow+\infty)$, where we write as before $\Phi_{0}(M)=\omega_{0}(\varphi[M])$ when $M \subset \boldsymbol{R}$. But it is evident by definition of $\Pi_{0}(B)$ and by construction of the sequence $\Delta_{n}$ that $\Pi_{0}(B)$ cannot exceed the supremum of $\Phi_{0}\left(B \Delta_{n}\right)$ for all $n$. Accordingly we get $\Pi_{0}(B) \leqq \alpha$, and thus it only remains to verify the opposite inequality. Since $\varphi$ is continuous on $B$, the first theorem of $\S 3$ requires that $\Phi_{0}(M) \leqq \Pi_{0}(M)$ whenever $M \subset B$. We therefore obtain $\Phi_{0}\left(B \Delta_{n}\right) \leqq \Pi_{0}\left(B \Delta_{n}\right)$ $=\Pi_{0}(B)$ for every $n$. Making $n \rightarrow+\infty$ here, we deduce at once $\alpha=\lim \Phi_{0}\left(B \Delta_{n}\right) \leqq \Pi_{0}(B)$, which completes the proof.

## References

[1] Ka. Iseki: Further measure-theoretic results in curve geometry, PJA, 37, 515520 (1961).
[2] : Some results in Lebesgue geometry of curves, PJA, 37, 593-598 (1961).
[3] - : On the measure-bend of parametric curves, PJA, 38, 1-6 (1962).
[4] : Further properties of reduced measure-bend, PJA, 38, 105-110 (1962).
[5] : Further results in Lebesgue geometry of curves, PJA, 38, 139-144 (1962).
[6] S. Saks: Theory of the integral, Warszawa-Lwów (1937).

