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(Comm. by Z. SUETUNA, M.J.A., May 12, 1962)

1. Conditions for countable straightenableness and countable
rectifiability. The present article is a continuation of our recent notes
which have appeared in these Proceedings. The underlying space R
will be assumed throughout to be at least two-dimensional.

We begin by stating the following result which is analogous to
Theorem (9.1) on p. 233 of Saks [6 and which may be established
as for that theorem with the aid of the category theorem of Baire.

THEOREM. [n order that a curve which is continuous on a non-
void closed set E of real numbers, be countably straightenable [or
countabIy rectifiableJ on E (see [5_4 and [12), it is necessary and
sucient that every nonvoid closed subset of E should contain a
portion on which the curve is straightenable rectifiable.

There is another condition sufficient for countable rectifiability
which is closely relatecl to Theorem (10.8) of Denjoy given on p. 237
of Saks 6. For this purpose we have to introduce a few definitions.
A curve situated in R will be said to be conic on the right on
the left at a point to eR, iff (i.e. if and only if) it is possible to choose
a number of the interval 03/2 and a nonvanishing vector p
of the space R, in such a manner that whenever a closed interval
I of length Il has to for its left-hand right-hand extremity and
moreover the increment (I) of the curve over I does not vanish,
the angle between (I)and p is less than (/2)-.. We shall further
term to be unilaterally conic at to iff it is conic on the side (right
or left) at to.

Our condition may now be set forth in the following form.
THEOREM. If at every point t of a linear set E, except perhaps

at the points of a countable subset, a curve is unilaterally conic,
then is countably rectifiable on E.

PaooF. Let A be the set of the points of R at which the curve
is conic on the right. It is certainly enough to show that is

countably rectifiable on A. Consider the rational vectors (i.e. having
rational components)of R other than the zero vector. Noting that
they are countable in number, we arrange all of them in a distinct
infinite sequence p,p,.... For each natural number n we denote
by A the set of the points teR such that [(?(t) ln and further that,
for every closed interval I whose length is l/n and whose left-
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hand extremity is t, the condition (I)-4:0 implies the inequality
9(I)p,(r/2)--(1/n). We then obtain easily A=A,A..., and
so the proof reduces to ascertaining that is countably rectifiable
on each A. For later purpose we remark in passing that for every
point t of A we have ](t)p I[(?(t)I" P n lPn I, where (t)p means
the scalar product of (t) and Pn.

Keeping n fixed, let us write A<,=A.(k/n, (k+l)/n for each
integer k (positive or not), so that A is the union of the sets A<,
for all k. If now J is any closed interval whose extremities belong
to A (and afortiori to An), we find at once, in view of the defini-
tion of the set An, that I(I)l.lpl.sin(1/n)_(I)pn. Hence, however
we may extract from A(2, where k is fixed, a finite sequence of points

t... t, we have
L(9; {t,..., t.}). p [.sin (1/n){(t)--(t)}p<2nlp I,

the last step being effected by the inequality (t)p, I<nlP already
mentioned. This shows us that the length L(99; Its,..., t}) is bounded
upwards. Since the sequence t,<... <t is arbitrary, it follows ira-
mediately that the curve is rectifiable on the set AC,). This implies
finally the countable rectifiability of {z over A, and the proof is
complete.

REMARK. It might be possible to obtain a result similar in its
character to our second theorem and stating a sufficient condition for
a curve (not necessarily continuous) to be Borel-rectifiable (21)
over a linear set. On the other hand it is permitted to replace in
our first theorem the word "countably" by "Borel" throughout. In
point of fact, countable straightenableness _countable rectifiability
of a curve over a linear set on which it is continuous is equivalent
to Borel straightenableness Borel rectifiability of the curve over
the same set (see _54).

2. A case in which the Hausdorff and reduced measure.bends
of a curve coincide on a set.

THEOREM. If a curve is B-sraigh$enable on a se$ E, $hen

//((; E)= ’(; E).
PROOF. Since, in abridged notations, H(E)’(E) by the theorem

of [52, ve need only derive the converse inequality. The set E,
which we may assume nonvoid, admits by hypothesis an expression
as the union of a disjoint sequence / of bounded sets which are
relatively Borel in E and on each of which is straightenable. We
then have both H(E)=II() and )’(E).=)’(/), since the Hausdorff and
reduced measure-bends of a curve are always outer measures in the
sense of Carathodory. Without loss of generality we may therefore
suppose E bounded and straightenable on E.

We inspect now the proof for the lemma of [31 and find that
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it is possible to decompose E into a finite disjoint sequence of sets,
say /0--(E,..., En), such that every E is a relative Borel set in E
(i:= 1,..., n) and fulfils the inequality tO(E) /2. (It should be noticed
that the boundedness of on E is unnecessary for the construction
of such a sequence Z/o.) It follows that II(E)--II(Ao) and similarly
for /’. We may thus assume in addition that t?(E)/2.

This being so, express E in any manner as the join of a sequence
(9 of its subsets. Noting that t?(N)/2 when N is a set in (9, we
apply the theorem of 53 and obtain (N)-w(9N)=?(N)for
each N, so that ()--/2()/’(t9). Remember now the definition of
Hausclorff measure-bend (see 52), and we find at once II(E)N(E),
which completes the proof.

:. A quantit]z resembling Hausdori measure.bend. Given a
curve , we shall retain the notation (E)=(o((fE) at the end of
the foregoing section, E being any linear set. Similarly we shall
write o(E)=w0(9E), where w0(X) denotes for any XR the outer
bend of X (see 25).

In 52 we have defined //(9;E) by a limiting process, with
the aid of the set-function w. If we now use (o0 in place of (o and
perform the same limiting process, we obtain a geometric quantity
analogous to //(9;E). This will be denotel by //0(9; E). In other
words, given a positive number , we express E as the union of an
arbitrary sequence z/ of sets with diameters less than and consider
the infimum of o(Z/) for all choices of z/; the limit, as -0, of this
infimum is then //0(9;E) by definition. It is easily verifiecl that
H0(9; E), qua function of E, is an outer CarathSodory measure which
vanishes when E is countable.

As we shall see below, there are cases in which //0(; E) turns
out equal to//(; E). But we are not in a position to decide whether
or not the two quantities are completely identical in all cases.

LEMMA. We have Ho(9; E) H(9; E)for any curve 9 and any
set E.

PROOF. Suppose //0(9; E) finite and consider any positive number. It is plainly possible to express E as the join of an infinite sequence
of sets E, E,. with diameters less than s, such that 0(E) Ao/ s,
where and subsequently Ao is short for //o(9; E) and n ranges over
1,2,.... For each n we can express the set En as the join of a
sequence An Of sets, in such a manner that ,(An)Ao/z. But it
is evident that II(;E)_,(An), with the same meaning for the
left-hand side as in 52. We thus get H(; E)<A0/s. Hitherto
s has been kept fixed. We make now s-0 and obtain at once
//(9; E)Ao, completing the proof.

THEOREM. If a curve 9 is continuous on a set E, we have
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H0(; E)--//(; E)o(E).
PROOF. 1) The inequality. Let us write for short A==II(; E).

To prove A 0(E), we may suppose A finite and E nonvoid. Conti-
nuity of on E implies that, given any s0, each point t of E can
be enclosed in an open interval I(t)with rational extremities and
such that d(EI(t)j)e. We can clearly extract from E an infinite
sequence of (not necessarily distinct) points t,t,..- so that the
intervals L,--I(t), where n-l,2,..., together cover E. Then E is
decomposed into a disjoint infinite sequence of sets E,E,... which
are defined by E--EI and

E/-E(I+--I In) (n--l, 2,. .);
so that d(E,)<e for every n and moreover A--, H(; E). For
each n, on the other hand, E may be expressed as the join of a
sequence /n Of sets such that (An)<TI(;E)-2-ne. By summing
this over all n -we derive ](z/) A+e. The last inequality shows
that E admits an expression as the join of an infinite sequence of
sets M, M.,..., such that d(M)<e for each n and that ,(Mn)
A/e. Noting that the images M together make up E, we
let e-0 and readily deduce o(E)--Wo(E)A, as required.

2) The equal t y of the assertion will be reduced to the inequa-
lity just established. In the first place we see by our lemma that
it suffices to derive H0(; E)A-//(; E). Given any e> 0, we de-
compose the whole line R into a disjoint infinite sequence z/of half-
open intervals J, J,.. with lengths less than s, so that A--II(; EA).
But we must have qo(EJ)ll(; EJ) for every n; for we may plainly
replace the set E by EJ, in our inequality @0(E)H(; E). It follows
at once that qo(EA)A. Since e is arbitrary, this implies directly
that //0(?; E)A, which completes the proof.

THEOREM. (i) If a curve is B-rectifiable on a set E, we have
Ho(; E)-//(; E); (ii) if on the other hand is B-straightenable on
E, i is B-rectifiable on E.

PROOF. re (i)" By hypothesis, the set E can be covered by a
disjoint sequence / of Borel sets on whose intersections with E the
curve is rectifiable. Then //o(; E)--H0(; Ez/) and //(; E)
--//(;E/). Without loss of generality we may therefore assume
further rectifiable on E. This being so, consider a rectifiable curve

which coincides on E with . Then//0(; E)--H0(; E) and similarly
for H, so that it is enough to derive //0(; E) II(, E). Let now
H be the set of all the points of discontinuity for . Since is
rectifiable, H must be countable. Accordingly//0(; E)--H0(; E--H),
and similarly for //. But the curve is continuous on E--H, and
so//o(; E--H) equals H(; E--H) in virtue of the foregoing theorem.
Hence the result.
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re (ii): It is sufficient to show that a curve is Borel-rectifiable
on a set XR whenever it is straightenable on X. For this purpose
we define a linear set T as follows: a point belongs to T iff t is
a point of accumulation for X and further, given any open interval
I containing t, the curve is unbounded on the intersection IX.
Then T must be a finite set, as we found in the course of the proof
for the theorem of 42. On the other hand each point of R--T
can be enclosed, by definition of T, in some open interval J with
rational endpoints and such that is bounded on the intersection
JX. But is then rectifiable on JX on account of the lemma of

3 1. Since there is only a countable infinity of open intervals
with rational extremities, we conclude that is Borel-rectifiable on
the set X.

REMARK. The part for statement (ii) of the above proof may
also be attached to the following proposition: a curve is countably
rectifiable on a set whenever it is countably straightenable on the
same set.

4. Multiplicity function. Given a curve and a set ER, we
define as before the multiplicity function N(F; x; E), where xeR, to
be the number (finite or / ) of the points t of E such that (t)=x.

THEOREM. If E is a Borel set and is B-straightenable on E
in the above, the function N(F; x; E) is measurable with respect to
the outer bend Wo and we have the relation

’(; E)--//(; E)--//0(p; E)-f x; E)dwo(X).
R

PROOF. We may restrict ourselves to the last equality, for the
first two equalities are already obtained in the foregoing two sections.
To shorten our notations, we shall write IIo(M) and N(x; M) for
//0(; M) and N(; x; M) respectively, M being any linear set. It is
obvious that if we decompose the set E into a (disjoint) sequence

of Borel sets, then IIo(E)--IIo(d) and N(x; E)--N(x; d) for every
xeR. This, combined with part (ii) of our last theorem, allows us
to assume rectifiable on E. There then exists a rectifiable curve
coinciding on E with , and it follows at once that we may suppose

itself rectifiable (over R). If, consequently, A denotes the set of
all the points of E at which is discontinuous, A is countable and
hence so must be its image [A] also. Then N(x; A), which is zero
unless xe[A], is measurable (co0) and its integral (0) vanishes,
where and below integration is always extended over the whole
space R. Further, we clearly have H0(A)=0. On writing B--E--A,
our task therefore comes to proving the measurability (w0) of N(x; B)
and the equality a--Ho(B), where abbreviates the integral (Wo) of
N(x; B). We observe in passing that is continuous at all points
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Of the set B.
Given a natural number n, let us consider the half-open intervals

I(,=(k/2, (k+l)/2) for k-0, +/-1, ___2,... and arrange them in a
sequence . Then / is a refinement of /n for each n, and if F(x)
means the sum, for all values of k, o,f the characteristc functions
of the images [BI(,, it is seen that the functions F(x),F.(x),...
constitute a monotone non-clecreasing sequence tending to N(x; B).
Furthermore each [BI is an analytic set in R, since it is a
continuous image of a Borel set. Now, as is well known, analytic
sets are measurable with respect to any outer Carathodory measure.
It follows that each F(x) is measurable ((o0) and that its integral
(Wo) tends non-decreasingly to a (see above)as n-->+. In other
words, we have o(Bz/) a (n-+), where we write as before
0(M)--o0([M) when MR. But it is evident by definition of
IIo(B) and by construction of the sequence z/ that Ho(B)cannot
exceed the supremum of q0(Bz/) for all n. Accordingly we get
IIo(B)a, and thus it only remains to verify the opposite inequality.
Since is continuous on B, the first theorem of 3 requires that
o(M)IIo(M) whenever MB. We therefore obtain qo(B,)Ho(B1)
=//0(B) for every n. Making n-->+ here, we deduce at once
a-lim qo(Bzl)IIo(B), which completes the proof.
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