No. 6] 239

53. A Remarkable Divergent Fourier Series

By Yung-Ming CHEN
Department of Mathematics, Hong Kong University, Hong Kong
(Comm. by Z. SUETUNA, M.J.A., June 12, 1962)

It is very well known that A.N. Kolmogorov [2] was the first
to construct an example of a function f(x)eL(0,2x) whose Fourier-
Lebesgue trigonometric series diverges almost everywhere. Later
he constructed a Fourier-Lebesgue series which diverges unboundedly
everywhere [3]. But the Fourier series given by Kolmogorov is
not a Fourier series of a function f(x)eL log*L, since its conjugate
series is not a Fourier series.” The next step forward was made
by G. H. Hardy and W. W. Rogosinski [1]. They constructed an
almost everywhere divergent Fourier series whose conjugate series
is also a Fourier series.”

In another direction, K. Zeller [8] gave a method to construct a
Fourier series which converges on an arbitrary set EC(0, 2x) of the
type F, (denumerable sum of closed sets) and diverges unboundedly
on E,=[0,2r)—E. Recently L. V. Taikov [6] constructed a Fourier
series which converges on EC[0,2z) of the type F, and diverges
unboundedly everywhere on E,=[0,27)—FE such that the conjugate
series is also a Fourier series.

It is natural to inquire whether the Fourier series of a function
f(x) belonging to L*0,2r) converges almost everywhere. This was
conjectured by N.N. Lusin in the positive sense some forty-five
years ago,” but it has neither been proved nor been disproved. To
attack this difficult problem, it is of interest to observe the maximum
speed at which a Fourier series may diverge unboundedly almost
everywhere. If there exists a Fourier series which diverges very fast,
we might think that the Lusin’s conjecture could not be true. Concern-
ing to this point, A. Zygmund ([10], p. 308) conjectured that for any
sequence of positive numbers 1,=o(log n), n—>oo, there is an felL
such that at almost every point x we have S,(#; f)>2, for infinitely
many 7, where S,(x; f) denotes the nth partial sum of the Fourier

1) See, for example, [10] p. 808 and [7] Theorem 9. But, the series considered
in [7]88 is different from the original series defined by Kolmogorov, since the function
dn(x) defined in [7] 83 is not a Féjer kernel. Each function f(x) of the class denoted
by Llog* L is such that |f(x)|log*|f(z)|€ L(0, 2).

2) In the English translation of [6]: Soviet Math., 6, No. 2, p. 347, it is stated that
Hardy and Rogosinski constructed an everywhere divergent Fourier series whose conjugate
series is also a Fourier series, but it has been wrongly translated, cf. also [5].

3) See [4] p. 219.
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series of f(x). The purpose of this paper is to present a function
f(x) whose Fourier-Lebesgue trigonometric series diverges unbounded-
ly at every point with the secale of o(log log %), such that the conjugate
series of the Fourier of f(«) is also a Fourier series. From this result
it is natural to conjecture that there exists a function f(x)eL(0,2r)
with f(x)e L(0,27z) and |f(x)|log*log®| f(»)|€L(0,27) such that the
Fourier series of f(x) diverges everywhere in [0, 2r).

LEMMA 1. Let M>0. Then for each trigonometric polynomial

(1) T(x):%’—l—élak cos kx+b, sin ke,
there exists a trigonometric polynomial of the form
(2) t(x):éc’c cos kx+d, sin ke,
where Q> M, such that, for each xz¢[0,2x),

(3) [t(@) || T(2)|, [8a) || T(w)],

(4) %sgplSk(w; T)|<sup|S,(%; t_)ISSlip{lSk(%; t)|+1Su(T) |},
(5) %sgpwk(x; T)ISSliplsn(x; 1,

where t(x) and T(x) are respectively the conjugate functions of f(x)
and T(x).

Lemma 1 is due to L. V. Taikov [6].* In what follows we shall
denote, by K,, K,,---, some positive constants.

LEMMA 2. There is a sequence of non-negative trigonometric
polynomials F., Fy,---, F, ... of orders v,<v,<--., with constant
term 1 and having the following properties. With each n we can
associate a number A,=K,logn, a set E,=[0,4x(n—Vn)/(2n+1)]
[0, 27), and an integer 2, such that

(i) 2,/ 0;

(ii) for each wzeFE,, there is an integer k satisfying 1,<k<y,,
20 n < k="Fk(x,n) <20 Kp~""nX»=Y"+ for gufficiently large =, and such
that
(6) S.(x; F,)>A,=K, log n> K, log log &,
for sufficiently large n.

It is sufficient to prove (6) and to estimate the value of k; and
we omit further details of the proof which have been given in [10]
pp. 310-311. We now follow the details in [9] pp. 1756-179, in which
the method is different from the argument given in [10] p. 313

4) See Lemma 2 in [6]. There is a slip in p. 784, where | cos px I§% should read
| cos px[é% and we have to replace i—st;cplsk(ac: T)| in formula (2) of [6] by

—é—sgp [ Si(xz:t)| in our formula (4). Our formula (5) has been established in [6], p. 784.
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which depends on the theory of distribution. In the first place, we
need to give a precise estimate of the value of §=4, which is defined
in [9], p. 176. Writing K, (t) for the mth Féjer kernel of ¢:

. (m+1\,)2
1 [sm( 5 >t[
2(’”&"}"1)1 sin_;_t J ’
we define, as in [9] p. 176,
(8)  Fi)=¢@)+ (@)= K, [@n+ Dal+ Lo SIK, (o—r)

(7) K, ()=

where x,=2r7/2n+1), M=m,<m;<---, and the numbers m, will be
defined later. We now set ¢(x)=K,{(2n+1)a}=n, for xel,=(x,—,
x;+0),1=1,2,---,2n. Taking m=m,=M=20n,t=(2n+1)x, we have

[sin(—w)t i 2
K ()= 2 )|y 2 {sin<m+1>t}

() m *Z(m—l—l)l Sin%t J T (mA+1)E 2
27? > m2_(|)_1

2 {(m—l—l) }22 m+1 -

= prne U 2z

for 0<(m_—|2—1ﬁ<% and 0<e< So it is sufficient to

20m(n+41)
1
axe =20

5 for sufficiently large n. We now write, as in [9]
n

p. 178, %,,.,—ax=4x0/(2n+1). Then xel;+1I;;,, if and only if

J
fe {<77 —;——n>+<%+rz,l—rz>}, where Ij=(x,+6,%,,,—0), j=0,---,2n.
. b 1 1
Th =92 = .
18 AN = T 80am?~ 320m

values of m;,0<j<m—+mn, which are defined in [9] pp. 178-179.
This corresponds to the following cases:

(@) 206(217,%—), ®) 206<%, %) ©) 2ae<§,1_2;7>.

We proceed to estimate the

From cases (a) and (c), we obtain
2(1/12) 80 ,
< e e A =n?
(10) ISt S aszony T 8
The case (b) can be decomposed into:
1 5 5 7 7 2
20 <_, _>, 20 <_, —>, 20e<ﬁ _>.
(@ 20e(g5) B Pelp ) O 1273
In cases (a) and (7), 46 belongs to either <—§T, —2—) or <—(1?, %), and

this gives

11) mly<m -+ %Ofnﬂ.
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It remains to consider the case (8). Following the argument in [9]
p. 179, we have

(12) mi<m ,+ §g—onzmj=<1+ %9n2>mj<K4n2mj.

Since we may take m;,,=2m/+1, and therefore we have the estimate:
(13)  m,<Kin¥m,< Kp="n¥e=m.20m, j=0,1, -, [n—yn 1.

If we(If;+I};,,), then the value k=Fk(x, n) is defined by m ,<k< %m,”.

This means log log k< K, log n, for sufficiently large n, and therefore
we obtain

[n—+vn]
(14) S.(F,; x)> K, log n>K,log log k, x¢ 3?7‘, (I I;10),
(15)  Su(F; 0)=Su(Fy; 0)=Saon(Fui 2) = —;—n ve L,
=0

The inequality (6) then follows immediately from (14) and (15).

THEOREM 1. Given any sequence of positive numbers p,=
o(log log n), n—>oo, there exists a function f(x) with conjugate series
being a Fourier series, such that at every point z, S,(x; f)>p, for
infinitely many n.

Proof. We first take a trigonometric polynomial ¢,(x) obtained
from F,(x) as in Lemma 1, so that there is no overlapping of terms
occured in the following trigonometric series:

(16) i‘@:i _1_[K2 —Vonn2§¢vT>+1+P(n)%a cos jx+b, sin jx)

T B, 1B, =P J i !
where the constants B,, a, b, will be defined later. This means
am 20Ky Vr iVl P(n) < P(n+1),

(18) P(n+1)—P(n)>K;“ J%nzm—VZ)u.

It is sufficient to take

[P(n):ang”“’;xz‘x“’;)”dw

(19) \

L < j ey dz<em™ (n>N),
1

for sufficiently large n. So we may take P(n) equals to the integral
part of ¢*: P(n)=[e***]. We may assume, without loss of generality,
that p,/log log n decreases steadily to zero. Then we set B, such
that

1 16p,
(20) B, > K,loglogk’
for all values of k=k(x, n) such that
(21) 20n+ P(n) <k=k(x, n) < P(n)4+20Kp- V" pin-Vm+1,
It follows that
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(22) 16p[20n+P(n)] < 1 .
K, log log {20n+P(n)} ~ B,
It is then suffiicient to take
(23) = K, log log 20m
16p20n

which increases monotonically to infinity, as n—> .
Next, let us define », and

(24) f (@)=t (®)/B.,

so that ﬁ]l/Bni< . From Lemma 1 and Lemma 2, we see that
i=1

f(x)e L(0, 2x), and the series (24) has infinitely many blocks of non-
overlapping trigonometric polynomials, such that
. 1S,(5¢) 1 1 ST,
S.(x; = Be\ n) s, - L = PR\ T )
[l 5 )] > 5 B> 2 L S
(25) 1 16
S K,loglog k»——2Pe s
1 >16 s 108 108 K, loglogk P
for infinitely may k satisfying
(26) k> P(n,)=[ei].
It remains to show that f(x)eL(0,2x). By Lemma 1, it follows that

| [17@lde<; [(Huo a8,

;0 0

1 . > 1
;ani[ {Fm(x)lax—-Zn;‘,Bni<oo.
Hence f(x)eL(0,27). This completes the proof of Theorem 1. The
following theorem is a direct consequence of above Theorem 1 (cf.
also [5]):

THEOREM 2. Given any sequence of positive numbers p,=
o(log log m), n— oo, there exists a Fourier series belonging to the class
H, such that at every point z¢ [0, 2z), S,(, f)> p, for infinitely many n.

(27)

Added in Proof. The author is indebted to Prof. P. L. Ul’yanov
for pointing out a mistake during the preparation of this paper.
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