112. On an Isomorphism of Galois Cohomology Groups $H^{m}(G, O_{\pi})$ of Integers in an Algebraic Number Field

By Hideo Yokoi

(Comm. by K. SHODA, Oct. 12, 1962)

Introduction. In my paper $[1]^{1}$ we proved the following theorem:

Let K be a normal extension over the rational number field Q, and k be a subfield of K such that K/k is cyclic of prime degree p and that k/Q is normal of degree n. Then, for every dimension m the Galois cohomology group $H^m(G, O_K)$ (G=G(K/k)) of O_K with respect to K/k is isomorphic to the ns/e-ple direct sum of cyclic group of order p:

$$H^m(G, O_K) \cong \{ \overbrace{p, p, \cdots, p}^{ns/e} \}.$$

There we proved this Theorem by showing that the 1-dimensional Galois cohomology group $H^1(G, O_K)$ of O_K with respect to K/k is isomorphic to the 0-dimensional Galois cohomology group $H^0(G, O_K)$ of O_K with respect to K/k:

$$H^1(G, O_{\mathcal{K}}) \cong H^0(G, O_{\mathcal{K}}).$$

In the present paper, we shall give another proof of this Theorem by showing that the 0-dimensional Galois cohomology group $H^{0}(G, O_{K})$ of O_{K} with respect to K/k is isomorphic to the -1-dimensional Galois cohomology group $H^{-1}(G, O_{K})$ of O_{K} with respect to K/k:

$$H^0(G, O_{\mathcal{K}}) \cong H^{-1}(G, O_{\mathcal{K}}).$$

Theorem. Let K be a normal extension over the rational number field \mathbf{Q} , and k be a subfield of K such that K/k is cyclic of prime degree p and that k/\mathbf{Q} is normal of degree n. Denote by G the Galois group of K/k, by O_K and O_k the rings of all integers in K and k respectively. Further, let v be the common ramification number with respect to K/k of all the prime divisors \mathfrak{P}_i of p in K,² and e be the common ramification order with respect to k/\mathbf{Q} of all the prime divisors \mathfrak{p}_i of p in k. Put $s=v-\left[\frac{v}{p}\right]\geq 0$, where [x] means Gaussian symbol.

Then the-1-dimensional Galois cohomology group $H^{-1}(G, O_K)$ of O_K with respect to K/k is isomorphic to the ns/e-ple direct sum of cyclic group of order p:

¹⁾ Cf. H. Yokoi [1], Theorem 3.

²⁾ Here we understand the ramification number v in the same way as we understood in [1]. Cf. H. Yokoi [1], [Remark].

$$H^{-1}(G, O_K) \cong \{ p, p, \cdots, p \}.$$

Proof. Let O_K^{π} be the submodule of O_K which consists of all elements A in O_K such that $S_{K/k}A=0$, σ be a generator of Galois group G of K/k, and Z[G] be the group ring of G over the rational integers. Set $S=1+\sigma+\cdots+\sigma^{p-1}\in Z[G]$. Then we may regard O_K^{π} as a Z[G]/(S)-module, where (S) is the principal ideal of Z[G]generated by S. Since Z[G]/(S) is a Dedekindian ring, we have by Chevalley's lemma³ direct decompositions

(#) $O_{K}^{*} = \mathfrak{A}_{1} \oplus \mathfrak{A}_{2} \oplus \cdots \oplus \mathfrak{A}_{n}, \\ (\sigma-1)O_{K} = \mathfrak{B}_{1} \oplus \mathfrak{B}_{2} \oplus \cdots \oplus \mathfrak{B}_{n}$

of Z[G]/(S)-modules O_{K}^{*} and $(\sigma-1)O_{K}$ with $\mathfrak{A}_{i} \supseteq \mathfrak{B}_{i}$ $(i=1,2,\cdots,n)$. Since $(\sigma-1)O_{K}^{*}$ is also a Z[G]/(S)-submodule of $(\sigma-1)O_{K}$, corresponding to the decompositions (#) we have the direct decomposition $(\sigma-1)O_{K}^{*}=(\sigma-1)\mathfrak{A}_{1}\oplus\cdots\oplus(\sigma-1)\mathfrak{A}_{n}$

of $(\sigma-1)O_{\kappa}^{*}$ such that $\mathfrak{A}_{i} \supseteq \mathfrak{B}_{i} \supseteq (\sigma-1)\mathfrak{A}_{i}$ $(i=1, 2, \dots, n)$. Further, since the index of $(\sigma-1)\mathfrak{A}_{i}$ in \mathfrak{A}_{i} is the prime number p, each factor \mathfrak{B}_{i} is equal to either \mathfrak{A}_{i} or $(\sigma-1)\mathfrak{A}_{i}$.

On the other hand, if we put t=ns/e, we may take the following basis of the ring O_{κ} :⁴⁾

 $O_{K} = [\beta_{1}, \cdots, \beta_{n(p-1)}, \omega_{1}, \cdots, \omega_{t}, \xi_{1}, \cdots, \xi_{n-t}]$

with $\xi_i = (\omega_{t+i} + \alpha_i)/p$ $(i=1, 2, \dots, n-t)$, where $[\omega_j \ (j=1, 2, \dots, n)]$ is a suitable basis of O_K , and α_i , β_m are integers in K such that $S_{K/k}\alpha_i$ $=0, S_{K/k}\beta_m=0, (i=1, 2, \dots, n-t, m=1, 2, \dots, n(p-1))$. Then both $(\sigma-1)O_K$ and $(\sigma-1)O_K^*$ are submodules of O_K^* generated by $(\sigma-1)\beta_1$, $\dots, (\sigma-1)\beta_{n(p-1)}, (\sigma-1)\xi_1, \dots, (\sigma-1)\xi_{n-i}$ and $(\sigma-1)\beta_1, \dots, (\sigma-1)\beta_{n(p-1)}$ respectively. Therefore, $(\sigma-1)\xi_i=(\sigma-1)\alpha_i/p$ $(i=1, 2, \dots, n-t)$ generate the factor module $F=(\sigma-1)O_K/(\sigma-1)O_K^*$ and moreover they form a basis of F. For, if we assume that $\Sigma_i x_i (\sigma-1)\xi_i=(\sigma-1)\beta$ for some β in O_K^* and for rational integers $x_i \ (i=1, 2, \dots, n-t)$, then we have $(\sigma-1)(\Sigma_i x_i \alpha_i/p-\beta)=0$ and hence $p\beta=\Sigma_i x_i \alpha_i$. But since $\alpha_i=p\xi_i-\omega_i$, we have $\Sigma_i x_i \omega_i=p(\beta-\Sigma_i x_i \xi_i)$, which implies $x_i\equiv 0 \mod p$ for every $i=1, 2, \dots, n-t$.

This fact means, as we see by permuting the summands in (#), that $\mathfrak{B}_1 = (\sigma - 1)\mathfrak{A}_1$, $\mathfrak{B}_2 = (\sigma - 1)\mathfrak{A}_2$, \cdots , $\mathfrak{B}_t = (\sigma - 1)\mathfrak{A}_t$ and $\mathfrak{B}_{t+1} = \mathfrak{A}_{t+1}$, \cdots , $\mathfrak{B}_n = \mathfrak{A}_n$. Consequently, we have the following direct decompositions:

 $F = (\sigma - 1)O_K/(\sigma - 1)O_K^* \cong \mathfrak{A}_{t+1}/(\sigma - 1)\mathfrak{A}_{t+1} \oplus \cdots \oplus \mathfrak{A}_n/(\sigma - 1)\mathfrak{A}_n,$ $O_K^*/(\sigma - 1)O_K \cong \mathfrak{A}_1/(\sigma - 1)\mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_t/(\sigma - 1)\mathfrak{A}_t.$

This implies our isomorphism

$$H^{-1}(G, O_{\kappa}) \cong O_{\kappa}^{*}/(\sigma-1)O_{\kappa} \cong \{p, p, \cdots, p\}.$$
 Q.E.D.
this Theorem and Proposition 6 in [1], we can prove the

From

³⁾ Cf. C. Chevalley [3].

⁴⁾ Cf. H. Yokoi [2], Theorem 2.

isomorphism between the -1-dimensional Galois cohomology group $H^{-1}(G, O_K)$ of O_K with respect to K/k and the 0-dimensional Galois cohomology group $H^0(G, O_K)$ of O_K with respect to K/k in the same way as in [1] we proved the isomorphism between the 1-dimensional Galois cohomology group $H^1(G, O_K)$ of O_K with respect to K/k and the 0-dimensional Galois cohomology group $H^1(G, O_K)$ of O_K with respect to K/k and the 0-dimensional Galois cohomology group $H^0(G, O_K)$ of O_K with respect to K/k and the 0-dimensional Galois cohomology group $H^0(G, O_K)$ of O_K with respect to K/k. Consequently, we obtain the isomorphism of all dimensional Galois cohomology $H^m(G, O_K)$ of O_K with respect to K/k again similarly.

References

- [1] H. Yokoi: On the Galois cohomology group of the ring of integers in an algebraic number field, forthcoming in Acta Arithmetica.
- [2] ——: On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J., 16, 83-90 (1960).
- [3] C. Chevalley: L'arithmétique dans les algèbres des matrices, Actual. Sci. Ind., 323.