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1. Introduction. In 1954 H. Cohen [1] defined a cohomological
dimension for locally compact Hausdorff spaces and proved several
properties which are desirable for a dimension function. His defini-
tion reads as follows: a locally compact Hausdorff space X has cdX<n
if and only if for each closed set C of X and for each compact set
K in X H(K~C;G) is the image of H™(K; G) of the homomorphism
induced by the inclusion of K~C into K where m is any integer
such that m=» and H™(K; G) and H"(K~C;G) are the m-th Cech
cohomology groups with the non-zero additive Abelian group G as
coefficient.

In this paper we will modify his definition for paracompact
Hausdorff spaces and establish some properties: the monotone pro-
perty and the sum theorem.

All spaces in the present paper will be assumed to be para-
compact Hausdorff unless otherwise specified, and all coefficient groups
will be assumed to be non-zero additive Abelian groups.

2. Preliminaries. Notations. Let X be a space and let 4 be
a closed set of X. For each non-negative integer n H™(X; G) means

the n-th Cech cohomology group of X with G as coefficient and

HY(X, A; G) means the mn-th Cech cohomology group of X relative
to A. If e is an element of H"(X;G), then we denote by e|4 the
image of ¢ by the homomorphism of H*(X;G) into H*(4;G) induced
by inclusion.

Let a, 8 be open coverings of X. Since X is paracompact, all
open coverings are assumed to be locally finite. For each open
covering @ of X we let N(a) be the nerve of a. If B is a refine-
ment of a, then there is a projection I7 of N(B) into N(a) and this
I induces the homomorphisms /7., of w-cochain group, n-cocycle
group and 7n-cohomology group of N(«) into n-cochain group, n-
cocycle group and m-cohomology group of N(B), respectively.

If t*=(U,,---,U,) is an n-simplex of N(«), then we denote by

(t"), the set ﬁ U,. If ¢c"=>a,; is an nm-cochain of N(a) (where
k=0 ]

each a, is a non-zero element of G), then we denote by (c*), the set
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U(t2),. Moreover, for each m-cochain ¢"=>a,t; of N(a) and for
»

©
each closed set A of X let ¢"|A be the subcochain of ¢* such as
Sa,tn | E2)e~Axd). (¢ is the empty set.)

Let « and B8 be two collections of open sets of X. We denote
by a™~B the collection {U|Uca or Uep}. If A is a set of X and
if « is a collection of sets of X, then we denote by a|A the collec-
tion {U~A|Ueal.

Let A and B be two sets of X such as ACB. Let a and S be
two locally finite collections of (open) sets of X such that a covers
A and B covers B, and such that a=p' ={U|UcB, U~Ax ¢} where
a=p means that « is similar to 8. Then there exists a one-one
correspondence ¢ of the elements of a to the elements of 8 such that

%
for any finite subcollection {U,,|m=1,---,k} of « NU,,x¢ if and
m=1
only if ﬁi(U,,m) 2 ¢. In this paper we will use ¢ in the case only
m=1

when each element U, of a is contained in the element (U,) of 8.
Now this ¢ induces a homomorphism of C*(N(a); G) into C*(N(B); G)
where C"(N(a); G) and C"(N(B); G) are m-cochain groups of N(a) and
N(B), respectively. We denote this homomorphism by (4, B). Since
a=f, it is true that i(4, B)(z") is an n-noncycle of N(F') for each
n-cocycle z" of N(a). (n is a non-negative integer.)

Definition. We shall say that a space X has D(X;G)=-—1 if
and only if X is the empty set. For any non-negative integer n we
shall say that X has D(X;G)<n if and only if, for any integer m
such as m=mn and for any closed set A of X, the homomorphism
H™(X; G)—> H™(A; G) induced by inclusion is onto.*

We state now for reference several results to be used below.

Theorem 2.1. (Exactness) If X is a space and if A is a closed
set of X, then the following sequence is exact

-+ > H"(X; G)>H"(4; G)»>H"Y(X, A; ) > H""(X; G)—> - - -.

Theorem 2.2. (Mayer-Vietoris) If X is a space and if X, X,
are closed sets of X such as X=X, X,, then the following sequence
18 exact
o> HY(X; G)»H"(X;; G) X H'(Xy; G)—~>H"( X, ~ Xy G)~>H" Y X; G)—> - - +.

The above theorems are found in [3] and [4; p. 43].

Theorem 2.3. (Katetov) If X is a collectionwise normal Haus-
dorff’ space, them for each closed set S of X and for each locally
finite open covering {U} of S there exists a locally finite collection
{V} of open sets of X satisfying the following condition C(S,{U.},

* By a kind letter from Professor K. Morita we have learned that for compact
spaces this definition coincides with Alexandroff’s original definition.
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{Veh: L$JVeDS, Ve~SCU, and the correspondence V.« U, induces

(VS={U)={V.)={V.} (cf. [5], Theorem 3.2).

3. Main theorems.

Theorem 3.1. (Monotone) Let X be a space and let Y be a closed
set of X. If D(X;G)<n, then we have D(Y; G)<n.

This is an immediate consequence of the definition.

Theorem 8.2. (Sum) Let X be a space and let {X,} be a count-
able collection of closed sets of X such as OEJ X, =X. If each X, has
D(X,; ®)<n, then we have D(X; G)=mn.

Proof. It is sufficient to show that for any integer m(=n) and
for any closed set A of X the homomorphism H™(X; G)—>H™(4; G)
is onto. Hence for each element e of H™(A4;G) we shall construct
an m-cocycle 27 such as {z7"|A}=e where {#7} means the cohomology
class of N({) containing zp.

Since D(X;; G)<n, by Theorem 2.2 we get an element e, of
H™(A™ X,; G) which is an extension of e. Quite similarly, we get an
element e, of H™(A“ X,~ X,; G) which is an extension of e,.

Let « be a locally finite open covering of A~ X,~ X, such that
there exists an m-cocycle 2 of N(a) which is a representation of e,.
By Theorem 2.3 there exists a locally finite collection S of open sets
of X which satisfies the condition C(4A™~ X, X,, a, B).

Since X is normal, there exist open sets P, P, and P, of X
such that A,=A“X,“~X,CcP,CP,cU{U|UeB}, A,=A~X,CP,CP,
CP, and ACP,CP,CP,.

Let a,=p|P(k=0,1,2), zn=i(4,, PN, 54 #* and let z:,",czz;’;[ﬁk
(k=0,1). From a=a, 27, is a cocycle of N(a;) and, therefore, 27, is
also a cocycle of N(a,)(k=0,1). Furthermore, from 2zm|A,=1I, 54,27
we have {z;| A,}={2r} on A, and, consequently, we have {z"}|A=e¢,|
A-=e.

To obtain 27 we shall construct m-cocycles #;(k=2,38,---) by
induction.

Let us suppose that we have constructed a,) (2<k<I) such that

P,: open in X; P,DA,=P,_,~X,,
a,) { a,: locally finite open covering of P,;a,| P, ,=a,_,
Zz: m-cocycle of N(a,); 2| Py =27 .

We shall now show that there exist P,.;, a,,, and 27, satisfy-
ing the condition a,.,,).

Let F=Fr(P)~ X,., where F'r(P,) is the boundary of P, in X,

Let 7 be a locally finite open covering of X,,,—P, such that
there exists an m-cocycle 27 of N(7) such as {¢7}|F={zn|F}. Since
D(X,.,; G)<n, it is possible to obtain such z” by Theorem 2.2.
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By Theorem 2.8 there exists a locally finite collection & of open
sets of A,,, satisfying the conditions C(F, o,|F,¢), C(F,r|F,¢) and
having the property that for any element U of ¢ U~P,_,=¢. And,
furthermore, 2¥,,~2% on N(¢|F) where 20, =Il,».»(?|F) and z.,
=11, r,.x(Z7|F). So, there exists an (m—1)-cochain ¢?~*(eC™ " }(N(¢|F');
G)) such that pcr'=27,,—27 where p is a coboundary operator.

Let f=a,|P,~ e~ (| X,.,;,—P,)). Then B is a locally finite open
covering of A4,,,. Since 8|F=¢|F=¢, we have

rer Tt =2n—2ntcy (1)
where cf 7 =i(F, A,.,)cv7, Zp=uF, A, 2%, Zh=1F, A, )2, and cf is
an element of C™(N(B)— N(e); G).

From the construction of B N(B8)—N(e) is divided into two dis-

joint subcomplexes of N(B). Accordingly, we have

cr=Ch+chn (2)
where ¢j and ¢ are m-cochains of N(B) such that (¢p)o~(X;.,—P)
=¢ and (cg.l)orxpz=¢-

Let

2y =2y — 20 | F 422+
where 27y =1l,, 5% and 275=1II; 4 x, , p?7.

Now we shall show that 27 is an m-cocycle of N(B). It is suffi-
cient to show that for any (m-+1)-simplex ¢ of N(8) KI[p#;: t]=0
where KI denotes the Kronecker index. (Cf. [2]) For this purpose
we shall distinguish three cases.

Case 1). (t)y~F *¢. In this case

KI[pzg:t]=KI[p22,: t]=0,
because 27,|F is a cocycle of N(g).
Case 2). (t),CP,—F. Similarly as in the case 1) we have
KI[pzy: t1=KI[pz3, t]=0.
Case 3). (£),CX,.;—P, In this case using (1) and (2) we have
KI[p#p: t1=KI[p(Zr—27 | F+25,): t]1+ KI[peg: t]
=KI[p(2pr—27 | F+22,): t1+ KI [ (25— 25 —cp): t]
=KI[pz7: t]1+KI[pes,| F—25): t ]+ KI[p(2pn—25 | F): t]
:O,
because 273 is a cocycle of N(B|X,.,—P,) and 27,|F=z2p, 2n=23|F.
Thus the proof that 2z} is a cocycle of N(8) is completed.

By Theorem 2.3 there exists a locally finite collection ¢ of open
sets of X satisfying the condition C(4,.,, 8|4,.,—P,), ) and satisfy-
ing the condition that for any element U of 6 U~P, ,=¢.

Since X is normal, there exists an open set P,.; of X such that

U{U|Uepf}1DP,.sDP, ., DA,
where p'=8|P,~ 0.
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Let ay,, =8| P,., and let 27, =i(A;.1, P.) [T 5,01,114,,,%5. Then from
the construction of a,,, and by the definition of 27, we have
P,.;: open in X; P, DA,
@14 @,..: locally finite open covering of P, a,.i|Pii=a,

m

#n,: m-cocycle of N(a.,); 20,,|P,_,=27_,.
Thus we can construct the open set P, and m-cocycle 2, satisfy-
ing the condition a,) for £=2,38,--., by an inductive process.

Let us put ¢ =kf_]2 (ay| Py-s). (We identify all elements which are

the same set.) Then { is a locally finite open covering of X, because
the collection {P,C—Pk_2|k=2, 3,---}>{P,} is a star-finite open cover-
ing of X.
Finally, we put
2e=1i(Py, X) (25| Po)+[i(Py, X) (2| P)—i(Py, X) (23] Py)]
+ [Py X) (2] Po)—i(Py, X) (&2 Py)]+ - - .

Then 27 is an m-cocycle of N({). For, if 2 is not a cocycle, then
we have KI[pz7:t] 0 for some (m—+1)-simplex t=(Uy,---, U,.,) of
N(). But from the construction of { there exists P, such that
UCP,(=0,---,m+1). Therefore, 0= KI[pzp:t]=KI[p2zy.,:t). This
contradicts the assumption that 27,,, is a cocycle. Moreover, since
2p| A=i(P,, X) (23| P))| A=20| A, we have {272}| A=e. This completes
the proof of Theorem 3.2.

Corollary 3.3. Let X be a space and let {K,} be a locally finite
and star-countable collection of closed sets of X. If each K, has
D(K; G)=n, then we have D(JK; G)<n.

2

Proof. If we decompose {K,} into the collection {F.} of compo-
nents (cf. [8]), then each &, is a countable subcollection of {K,} and
each F,=U{K,|K,;c¢%.} is a closed set of X. By Theorem 8.2 we
have D(F,; G)<n. Since {K,} is a locally finite, the collection {F}
is discrete in X. Therefore, we have D(UF,; G):D(LIJKX; G=n.

#

4. Relations between D(X; G) and other dimension functions.
In this section we indicate by dim the Lebesque’s covering dimen-
sion defined as follows: If for any locally finite open covering of
X there exists an open refinement of order not greater than n-+1,
then we define dimX<n. (Cf. [7].)

Theorem 4.1. If X is a space, then dim X=D(X; G) s concluded.

Proof. Let dim X<n. Then we have H™(X, 4;G)=0 for arbi-
trary closed set A and for each m>mn. Hence it is enough to show
that H*(X; G)—>H"(4; G) is onto.

Let {#7} be an arbitrary element of H"(4;G) and let a« be a
locally finite open covering of A such that 2 is a cocycle of N(a).
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Using Theorem 2.3 there exists a (locally finite) subcollection « of
open covering 8 of X such that the order of 8 does not exceed n-+1
and satisfying the condition C(A, @, a’). Then by the properties of
o (A, X)II, . 4% is an extension of {z7}. This completes the proof.

In particular, if dim X is finite, we have D(X; Z)=dim X where
Z is the group of all imtegers (cf. [2], Corollary 3.6 and Theorem
5.2). Thus we have immediately the following:

Corollary 4.2. If dim X is finite, D(X; G)=<D(X; Z) 1s true for
an arbitrary G.

Theorem 4.8. If X is a locally compact (paracompact Hausdorf)
space, then we have cdX=D(X; G).

Proof. Since X is a locally compact, paracompact Hausdorff
space, there exists a star-finite open covering {U.} of X such that

{U.} is star-finite and such that each U, is compact (cf. [6]). Let
{%,} be the collection of components of {U,} (cf. [8]); then each &,
is a countable subcollection of {U.}. Since ¢cdA=D(4;G) for an ar-
bitrary compact set A of X, for each ¢ cd[ U{U,|U.e&,}1=D(U{U,]|

U.e®,}; G) by Sum Theorem. If we put F,=U{U, U.c,}, then the
collection {F,} is discrete. Hence we have c¢cdX=D(X; G).

We indicate by indX the inductive dimension of Urysohn and
Menger.

Theorem 4.4. If X ts an S-space, then we have D(X; G)<indX.

Proof. By Theorem 4.1 we have inequality D(X; G)<dimX. The
inequality dimX=<1indX was established (cf.[7], Theorem 5.2). This
shows that D(X; G)=ZindX.
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