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108. Some Characterizations of m-paracompact Spaces. 1

By Tadashi IsHII
Utsunomiya College of Technology
(Comm. by K. KuNUGI, M.J.A., Oct. 12, 1962)

Recently K. Morita [4] has introduced a notion of m-paracompact-
ness, and proved some interesting results concerning it. For any
infinite cardinal number m, a topological space X is said to be m-
paracompact if any open covering of X with power <m (i.e. consisting
of at most m sets) admits a locally finite open covering as its re-
finement.

The purpose of this paper is to give some characterizations of
m-paracompactness, which are related to the results obtained by H.H.
Corson [1] and E. Michael [8] to characterize paracompactness of a
topological space.

1. The following theorem is a modification of Corson’s result
([1, Theorem 1]).

Theorem 1. For a normal space X the following statements are
equivalent.

(a) X is m-paracompact.

(b) If & is a filter base on X with power =<wm (i.e. consisting
of at most m sets) such that the image of § has a cluster point in
any metric space into which X is continuously mapped, then F has
a cluster point in X.

Proof. (a)—>(b). Let F={F,|1¢4} be a filter base in X with
|4|=m such that the image of & has a cluster point in any metric
space into which X is continuously mapped.” Assume that § has
no cluster point in X. Then G={X—F,|ic4} is an open covering
of X with power <m, since NF,=¢. Let U={U,|acQ} be a locally
finite open refinement of ¢, where we can assume that |Q2|<m. Since
X is normal, there exists a closed covering {K,|ac @} of X such that
K,cU, for every acf. Hence there exists, for each @, a continu-
ous function f,; X—I=T[0, 1] such that f,(x) is 1 or 0 according as
xeK, or xte X—U,. Now for every point £ of X we assign an element
o(x)={f(z)|acQ}. Let Y=¢(X), and let us introduce a distance d
in Y such that

A(p(a,), P(x2)) = e o | ful@y) —Sfu(®) ],
where o(x,)={f.(%)|acQ} (¢=1,2). Then it is obvious that ¢ is a
continuous mapping of X onto a metric space Y. Let V,={¢(x)|f.(x)>0}.

1) For any set A, we denote by | A| the cardinal number of A.
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Then {V,|aeQ} is an open covering of Y such that ¢ YV, ,)CU.,.
We must now prove that any point ¥ of Y is not a cluster point of

{op(F,)|2€4). Since y is contained in some V,, and oYV, )CU,CX—F,
for some Aed, we obtain ¢ (V. )NF,=¢. Hence V. No(F;)=¢. Thus
{¢(F';)| 26 A4} has no cluster point in Y.

(b)—>(a). Let U={U,|1¢4} be an open covering of X with power
<m. Then F={F,|2e4}is a filter base of power <m, where F,=X
—U,. Let Y be any metric space such that X is continuously mapped
into it, and we denote by f this continuous mapping. Under the as-
sumption that U has no locally finite open refinement, we shall prove

that the image of ¥ has a cluster point in Y, that is, N /(F,) 4.
Then we have NF,=¢ by (b), which contradicts NF,=¢. Now let
NSfF,)=¢. Then G={G,|1€4} is an open covering of Y, where
G,=Y—f(F,. Since Y is a metric space, there exists a locally
finite normal open refinement $={H,|ac2} of . Then {f (H,)|ac2}
is a locally finite normal open covering of X. Since U has no locally
finite open refinement, there exists a set f~'(H,) such that f-'(H,)
¢ U, for every ieAd. Therefore H,( f(F,) ¢ for every 1e¢4. This

is contradictory to the fact that G, f(F,) 3 ¢ for every A€/, because

H, is contained in some G,€®. Hence we have N f(F,)==¢. This
completes the proof.

In the proof that (b)—>(a), we do not use the assumption that
X is normal. Therefore we have the following

Corollary 1. ([1, Theorem 1]) For a Hausdorf space X the
following statements are equivalent.

(a) X is paracompact.

(b) If & is a filter in X such that the image of & has a cluster
point in any metric space into which X is continuously mapped,
then § has a cluster point in X.

If m=§, in Theorem 1, we have the following

Corollary 2. For a normal space X the following statements
are equivalent.

(a) X is countably paracompact.

(b) If & is a countable filter base in X such that the image
of & has a cluster point im any metric space into which X is con-
tinuously mapped, then § has a cluster point in X.

2. The following theorem is a modification of a theorem of £,
Michael ([3, Proposition 2]) and is essentially proved by K. Morita
[4]. We shall give here our proof based on the same idea as in
the proof of [8, Proposition 2].

Theorem 2. The following properties of a mnormal space are
equivalent.
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(a) X is m-paracompact.

(b) Every open covering of X with power <m has a partition
of unity subordinated to it.

Proof. (a)—>(b). This is trivial, since every open covering of
X with power <m has a locally finite partition of unity.

(b)—>(a). As a first step, we prove that X is countably para-
compact. For this purpose, by [2, Theorem 3], it is sufficient to
prove that each countable open covering of X admits a o-locally
finite closed refinement. But we can prove that each open covering
of X with power <m admits a ¢-locally finite closed refinement.
In fact, let U={U,|2¢4} be an open covering of X with |4|=m.
Then there exists a partition of unity @ subordinated to it. For
each positive integer 4, let &, be the collection of all sets of the

form {xeX|¢(x)=1/1}, with ¢e®, and let %:pl%}t. Clearly & is a

closed refinement of U. To prove that & is locally finite, pick a finite
subset @, of @, for any x,€X, such that > ¢(x,)>1—1/27, and then
$edo

pick a neighborhood W of x, such that ¢Z &(x)>1—1/7 for all xe W.
€do

Then W cannot intersect {xeX|#(x)=1/7} unless ¢e®,, and therefore
W intersects only finitely many elements of &;. Hence § is a o-
locally finite closed refinement of . Therefore X is countably para-
compact. By the similar arguments as above we can show that every
open covering of X with power <m admits a o¢-locally finite open
refinement. (Replace {xe X|gd(x)=1/?} with {xe X|4(x)>1/4}.) Hence,
by [4, Theorem 1.1 (e)], X becomes m-paracompact. This completes
the proof.

It should be noted that, in the proof that (b)—(a), we do not
use normality of X. For a topological space X, as the proof above
shows, (b) implies that every open covering of X with power =m
admits a o-locally finite open refinement. For a T,-space X, (b) im-
plies also complete regularity of X. By using these properties,
Michael [8] has proved his result ([3, Proposition 27):

The following properties of a T,-space are equivalent.

(a) X is paracompact.

(b) Ewvery open covering of X has a partition of unity sub-
ordinated to it.

Corollary. The following properties of a mormal space are
equivalent.

(a) X is countably paracompact.

(b) Ewvery countable open covering of X has a partition of unity
subordinated to tt.
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