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108. Some Characterizations of m.paracompact Spaces. 1

By Tadashi ISHII
Utsunomiya College of Technology

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Recently K. Morita [4 has introd,uced a notion of m-paracompact-
hess, and proved some interesting results concerning it. For any
infinite cardinal number m, a topological space X is said to be m-
paracompact if any open covering of X with power __< m (i.e. consisting
of at most m sets) admits a locally finite open covering as its re-
finement.

The purpose of this paper is to give some characterizations of
m-paracompactness, which are related to the results obtained by H.H.
Corson [1 and E. Michael [3 to characterize paracompactness of a
topological space.

1. The following theorem is a modification of Corson’s result
([1, Theorem 1).

Theorem 1. For a normal space X the following statements are
equivalent.

( a ) X is m-pa.racompact.
(b) If is a filter base on X with power <=m (i.e. consisting

of at most m sets) such that the image of has a cluster point in
any metric space into which X is continuously mapped, then has
a cluster point in X.

Proof. (a)-> (b). Let -{F 12 ey/} be a filter base in X with

Al<m such that the image of has a cluster point in any metric
space into which X is continuously mapped." Assume that has
no cluster point in X. Then (-{X--FI e//} is an open covering

of X with power =<m, since F--. Let l-- {U a e/2} be a locally
finite open refinement of @, where we can assume that [/2[’<m. Since
X is normal, there exists a closed covering {K]aet} of X such that
KcU for every a eg. Hence there exists, for each a, a continu-
ous function f: X-->I=[O, 1 such that f(x) is 1 or 0 according as
xeK or xeX--U. Now for every point x of X we assign an element
(x)-{f(x)[aeg}. Let Y=(X), and let us introduce a distance d
in Y such that

d((xl), (x2)) , If(xl)--f(x2) ],
where (x)-[f(x)lae9 (i-1,2). Then it is obvious that ( is a
continuous mapping of X onto a metric space Y. Let V-[(x)lf(x)>0}.

1) For any set A, we denote by AI the cardinal number of A.
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Then {V a e/2} is an open covering of Y such that -(V)U.
We must now prove that any point y of Y is not a cluster point of

{(F)ler/}. Since y is contained in some V, and -(V)UX--F
for some /, we obtain -(V) F--. Hence V (F) . Thus
{(F)le//} has no cluster point in Y.

(b)--> (a). Let lt-{U I //} be an open covering of X with power
__< m. Then ={FIe /} is a filter base of power =<m, where F-X
--U. Let Y be any metric space such that X is continuously mapped
into it, and we denote by f this continuous mapping. Under the as-
sumption that it has no locally finite open refinement, we shall prove

that the image of has a cluster point in Y, that is, f(F).
Then we have IF by (b), which contradicts IF--. Now let

f(F)--. Then (--{GI/} is an open covering of Y, where

G--Y--f(F) Since Y is a metric space, there exists a locally
finite normal open refinement 59-- {HI a e/2} of (. Then {f-(H) a e 9}
is a locally finite normal open covering of X. Since 1I has no locally
finite open refinement, there exists a set f-(H) such that f-(H)
CU for every -e/. Therefore Hf(F) for every e/. This

is contradictory to the fact that Gf(F) for every e/, because

H is contained in some Ge(. Hence we have lf(F). This
completes the proof.

In the proof that (b)->(a), we do not use the assumption that
X is normal. Therefore we have the following

Corollar 1. ([-1, Theorem 1) For a Hausdorff space X $he

following statements are equivalent.
(a) X is paracompact.
(b) If is a filter in X such that the image of has a cluster

point in any metric space into which X is continuously mapped,
then has a cluster point in X.

If -o in Theorem 1, we have the following
Corollar 2. For a normal space X the following statements

are equivalent.
a X is countably paracompact.
(b) If is a countable filter base in X such that the image

of has a cluster point in any metric space into which X is con-
tinuously mapped, then has a cluster point in X.

2. The following theorem is a modification of a theorem of E.
Michael ([3, Proposition 2) and is essentially proved by K. Morita
[4. We shall give here our proof based on the same idea as in
the proof of [3, Proposition 2.

Theorem 2. The following properties of a normal space are
equivalent.
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a X is m-paracompact.
(b) Every open covering of X with power <= has a partition

of unity subordinated to it.
Proof. (a)-(b). This is trivial, since every open covering of

X with power =<m has a locally finite partition of unity.
(b)->(a). As a first step, we prove that X is countably para-

compact. For this purpose, by [2, Theorem 3, it is sufficient to
prove that each countable open covering of X admits a a-locally
finite closed refinement. But we can prove that each open covering
of X with power =<m admits a a-locally finite closed refinement.
In fact, let II--{U]eA} be an open covering of X with [Al__<m.
Then there exists a partition of unity subordinated to it. For
each positive integer i, let be the collection of all sets of the

form {x e X] (x) => 1/i}, with e, and let - [_J . Clearly is a

closed refinement of lI. To prove that is locally finite, pick a finite
subset o of P, for any xoeX, such that (x0):>1--1/2, and then

pick a neighborhood W of x0 such that , (x)1--1/i for all x W.

Then W cannot intersect Ix X (x)__> l/i} unless e 0, and therefore
W intersects only finitely many elements of . Hence is a a-

locally finite closed refinement of lI. Therefore X is countably para-
compact. By the similar arguments as above we can show that every
open covering of X with power =<m admits a a-locally finite open
refinement. (Replace {xXl(x)>=l/i} with {xX](x)>l/i}.) Hence,
by 4, Theorem 1.1 (e), X becomes m-paracompact. This completes
the proof.

It should be noted that, in the proof that (b)-(a), we do not
use normality of X. For a topological space X, as the proof above
shows, (b)implies that every open covering of X with power __<m
admits a a-locally finite open refinement. For a T-space X, (b) im-
plies also complete regularity of X. By using these properties,
Michael [3 has proved his result ([3, Proposition 2)"

The following properties of a T-space are equivalent.
(a) X is paracompact.
(b) Every open covering of X has a partition of unity sub-

ordinated to it.
Corollary. The following properties of a normal space are

equivalent.
(a) X is countably paracompact.
(b) Every countable open covering of X has a partition of unity

subordinated to it.
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