106. A Note on the Cut Extension of C-Spaces

By Kazumi NAKANO and Tetsuya SHIMOGAKI Mathematical Institute, Hokkaidô University, Sapporo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

§1. Let R be a semi-ordered linear space which is Archimedean.¹⁾ A semi-ordered linear space \hat{R} is called the *cut extension of R*, if there exists a mapping of R into \hat{R} $(R \ni a \rightarrow a^{\hat{R}} \in \hat{R})$ such that

(C.1) $(\alpha a + \beta b)^{\hat{R}} = \alpha a^{\hat{R}} + \beta b^{\hat{R}}$ for any $a, b \in R$ and real numbers α, β ;

- (C.2) $a \leq b$ if and only if $a^{\hat{R}} \leq b^{\hat{R}}$;
- (C.3) $\bigcap_{\lambda \in A} a_{\lambda} = 0$ $(a_{\lambda} \in R, \lambda \in \Lambda)$ implies $\bigcap_{\lambda \in A} a_{\lambda}^{\hat{R}} = 0$ in \hat{R} ;
- (C.4) \widehat{R} is universally continuous;²⁾
- (C.5) for each $\hat{a} \in \hat{R}$ there exists a system of elements $a_{\lambda} \in R$ ($\lambda \in \Lambda$) such that $\hat{a} = \bigcup_{\lambda \in \Lambda} a_{\lambda}^{\hat{R}}$.

When we consider R as a lattice, \hat{R} : the *cut extension* of lattice R is nothing but a *normal completion* of R in Birkhoff's terminology [1].

It is well known ([4], Theorems 30.2 and 30.3) that for any Archimedean semi-ordered linear space R there exists always \hat{R} : the cut extension of R, and \hat{R} is determined uniquely up to an isomorphism.

Now let E be a compact Hausdorff space throughout this paper and C(E) be the space of all continuous functions defined on E. C(E)is a semi-ordered linear space (by the usual addition and order) which is not always continuous, but Archimedean [2, 5, 6]. Thus, as is shown above, $\widehat{C(E)}$: the cut extension of C(E) may be considered. The structure of $\widehat{C(E)}$ was investigated in [2] and it was proved that $\widehat{C(E)}$ is isomorphic to the C-space $C(\mathcal{E})$, where \mathcal{E} is the Boolean space associated with the lattice of regularly open sets³⁾ in E, while \mathcal{E} comes to be different from the original space E in most cases.

The aim of this note is to construct a function space on E which is isomorphic to $\widehat{C(E)}$. The result is the following:

1) R is called Archimedean, if $\bigcap_{\nu=1}^{\infty} \frac{1}{\nu} a = 0$ for every $0 \le a \in R$.

3) A subset G of E is called to be regularly open, if $G^{-o}=G$.

²⁾ A semi-ordered linear space is called *universally continuous*, if for any bounded system of elements: $\{a_{\lambda} : a_{\lambda} \leq a, \lambda \in \Lambda\}$ there exists $\bigcup_{\lambda \in \Lambda} a_{\lambda}$.

 $\widehat{C(E)}$ is isomorphic (as a semi-ordered linear space) to $C_q(E)/N$, where $C_q(E)$ is a space of all bounded quasi-continuous functions on E and N is a linear manifold of $C_q(E)$ consisting of all f such that f(x)=0 for all $x \in A'_f$ (A_f is a set of the first category in E which depends on f).⁴⁾

R. P. Dilworth proved in [2] that the normal completion of C(E) (considered as a lattice) is lattice-isomorphic to the set of normal upper semi-continuous functions⁵⁰ on E. This can not be, however, regarded as a cut extension of C(E), because the set of normal upper semi-continuous functions does not constitute a linear space in general.

§2. Let B(E) be the totality of all bounded real functions on E. For any $f \in B(E)$ we denote by $f^*(f_*)$ the upper function (resp. lower function) of f:

$$f^*(x) = \inf_{U} \{\sup_{y \in U} f(y)\}.$$

$$f_*(x) = \sup_{U} \{\inf_{y \in U} f(y)\}, \qquad (x \in E)$$

where U runs over all neighbourhoods of x. An element $f \in B(E)$ is called quasi-continuous [3], if $((f^*)_*)^* = (f_*)^*$, and the totality of all bounded quasi-continuous functions on E is denoted by $C_q(E)$. The following lemma is due to H. Nakano ([3], Theorem 4 and 11 in §63).

Lemma 1. $f \in B(E)$ is quasi-continuous if and only if f is continuous at each point of the complement of a set of the first category, and $C_q(E)$ is an Archimedean semi-ordered linear space including C(E) by the usual addition and order.

Now let N be the set of all $f \in C_q(E)$ such that f(x)=0 holds for all $x \in E$ except a set of the first category which depends on f. Since N is clearly a semi-normal manifold⁶ of $C_q(E)$, $C_q(E)/N$ comes to be also a semi-ordered linear space and we denote by \dot{f} an element of $C_q(E)/N$, i.e. a residue class by N, and denote also $C_q(E)/N$ by $C_q(E)$.

For any $f \in C(E) \subset C_q(E)$, $f^{\hat{c}}$ denotes an element of $C_q(E)$ to which f belongs.⁷⁾ Since the set $\{x: f(x) \neq g(x)\}$ $(f \neq g, f, g \in C(E))$ is open and not of the first category, $f \neq g$ $(f, g \in C(E))$ implies $f^{\hat{c}} \neq g^{\hat{c}}$.

We shall show in the sequel that $C_q(E)$ is isomorphic to the cut extension of C(E). Since it is clear that the mapping: $C(E) \ni g \rightarrow g^{\hat{c}}$ $\in C_q(E)$ satisfies (C.1) and (C.2) in §1, we shall prove that it does also

⁴⁾ For any $A \subset E$, A' denotes the complement of A. Since E is compact, EA_f' is dense in E.

⁵⁾ A bounded function f is called to be normal upper semi-continuous, if $(f_*)^* = f_*$.

⁶⁾ A linear manifold M of a semi-ordered linear space is called *semi-normal*, if $|b| \leq |a|$, $a \in M$ implies $b \in M$.

⁷⁾ Let ι be the inclusion mapping: $C(E) \xrightarrow{\iota} C_q(E)$ and q be the quotient mapping: $C_q(E) \xrightarrow{q} C_q(E)/N$. Then $f^{\hat{c}} = q(\iota(f))$ for $f \in C(E)$.

the conditions (C.3), (C.4) and (C.5) in the following lemmas.

Lemma 2. For any $\dot{0} \leq \dot{f} \in C_q(E)^{\otimes}$ there exists $0 \leq f \in C(E)$ such that $f^{\hat{c}} \leq \dot{f}$ and the mapping: $C(E) \ni g \rightarrow g^{\hat{c}} \in C_q(E)$ satisfies (C.3).

Proof. Let $f \in C_q(E)$ be an arbitrary element belonging to \dot{f} . By virtue of Lemma 1 there exists a set A of the first category such that f is continuous and $f(x) \ge 0$ on EA'. As $\dot{0} \le \dot{f}$, there exist $\varepsilon > 0$ and a open set $O \ne \phi$ such that $\{x: f(x) > \varepsilon\} \supseteq OA'$. Let $x_0 \in O$ and a(x) be a continuous function on E satisfying

- i) $a(x_0) = \varepsilon$, $0 \leq a(x) \leq \varepsilon$ for all $x \in E$;
- ii) a(x)=0 for all $x \in O'$.

For this $a \in C(E)$ we have $a(x) \leq \varepsilon < f(x)$ for all $x \in OA'$ and $a(x) = 0 \leq f(x)$ on O'A'. From this it follows that $a(x) \leq f(x)$ holds for all $x \in EA'$, hence $a^{\hat{c}} \leq \hat{f}$ holds. The remainder of this lemma is the direct consequence of this fact. Q.E.D.

Lemma 3. For any bounded system¹⁰ { $\varphi_{\lambda}: \varphi_{\lambda} \in C(E), \lambda \in \Lambda$ } of continuous functions, putting $f_0(x) = \sup_{\lambda \in \Lambda} \varphi_{\lambda}(x) (\lambda \in \Lambda)$, we obtain a quasicontinuous function $f_0 \in C_q(E)$ for which $\dot{f_0} \doteq \bigcup_{\lambda \in \Lambda} \varphi_{\lambda}^{\circ}$ holds in $C_q(E)$.

Proof. It follows from the definition of f_0 that f_0 is lower semicontinuous, hence quasi-continuous by virtue of Theorem 2 of §63 in [3]. As $\{\varphi_i\}_{\lambda \in A}$ is a bounded system, f_0 is also evidently bounded and $f_0 \in C_q(E)$. $f_0(x) \ge \varphi_i(x)$ for every $x \in E$ and $\lambda \in \Lambda$ implies $f_0 \ge \varphi_i(\lambda \in \Lambda)$ and also $\dot{f_0} \ge \dot{\varphi_i^\circ}(\lambda \in \Lambda)$. Conversely let \dot{g} be an element of $C_q(E)$ for which $\dot{g} \ge \dot{\varphi_i^\circ}(\lambda \in \Lambda)$ holds. If $\dot{f_0} - \dot{f_0} - \dot{g} \ge 0$, there exists $0 \le h \in C(E)$ such that $\dot{0} \le h^{\hat{c}} \le \dot{f_0} - \dot{f_0} - \dot{g}$ by virtue of the above lemma. It follows from above $h^{\hat{c}} + \dot{f_0} - \dot{g} \le \dot{f_0}$ and $\dot{\varphi_i^\circ} \le \dot{f_0} - \dot{g}(\lambda \in \Lambda)$, hence $h^{\hat{c}} + \dot{\varphi_i^\circ} \le \dot{f_0}$. Since f_0 is quasi-continuous, there exists a set A of the first category such that f_0 is continuous at each point of EA'. Now we have from above $h(x) + \varphi_i(x) \le f_0(x)$ for all $x \in EA'$ and $\lambda \in \Lambda$,

because for any $\lambda \in \Lambda$ $h(x) + \varphi_{\lambda}(x) \leq h_0(x)$ holds for every $x \in EA'B'_{\lambda}$, where B_{λ} is a set of the first category and $EA'B'_{\lambda}$ is dense in $EA'.^{11}$ As $\lambda \in \Lambda$ is arbitrary, it follows from above that $h(x) + \sup_{\lambda \in \Lambda} \varphi_{\lambda}(x) \leq f_0(x)$, whence h(x) = 0 on EA', which contradicts the assumption that $h \geq 0$. Therefore we have $\dot{f}_0 - \dot{f}_0 \wedge \dot{g} = 0$, i.e. $\dot{f}_0 \leq \dot{g}$, consequently $\dot{f}_0 = \bigcup_{\lambda \in \Lambda} \varphi_{\lambda}^c$. Q.E.D.

Lemma 4. For every $\dot{f} \in C_a(E)$ there exists a system of continu-

No. 8]

⁸⁾ We denote by \doteq , \doteq the equal relation and the order relation in $C_q(E)$ respectively.

⁹⁾ Since E is compact, E is completely regular.

¹⁰⁾ This means that $\varphi_{\lambda} \leq f$ ($\lambda \in \Lambda$) for some $f \in C(E)$.

¹¹⁾ Since $A \subseteq B_{\lambda}$ is of the first category and E is compact, $A'B'_{\lambda}$ is also dense in E.

[Vol. 38,

ous functions $\{\varphi_{\lambda} \in C(E), \lambda \in \Lambda\}$ such that $f = \bigcup_{\lambda \in \Lambda} \varphi_{\lambda}^{\circ}$, i.e. the mapping $C(E) \ni f \to f^{\circ} \in C_q(E)$ satisfies (C.5).

Proof. Let F be a set: $\{f : f \in C(E), f^{\hat{c}} \leq \hat{f}\}$. As f is bounded on E for an arbitrary $f \in \dot{f}$, F is a bounded system of continuous functions and f_0 $(f_0(x) = \sup_{f \in F} f(x) \ (x \in E))$ is a quasi-continuous function with $\dot{f}_0 \leq \dot{f}$ by Lemma 3. If $\dot{f} \geq \dot{f}_0$, then there exists $0 \leq f \in C(E)$ for which $\dot{f} - \dot{f}_0 \geq f^{\hat{c}}$ holds. In view of the construction of F and f_0 we obtain a contradiction by the same way as the proof of the preceding lemma, whence we have $\dot{f} = \dot{f}_0 = \bigcup_{i=1}^{\infty} f^{\hat{c}}$. Q.E.D.

Lemma 5. $C_q(E)$ is untiversally continuous.

Proof. Let $\dot{f_{\lambda}} \leq \dot{f}$ ($\lambda \in \Lambda$) and F be the set $\{f : f \in C(E), f^{\hat{c}} \leq \dot{f_{\lambda}} \text{ for some } \lambda \in \Lambda\}$, then F is a bounded system in C(E) and by virtue of Lemma 3 there exists $f_0 \in C_q(E)$ for which $\dot{f_0} = \bigcup_{f \in E} f^{\hat{c}}$ holds. From this and the above lemma we may infer easily that $\dot{f_0} = \bigcup_{\lambda \in \Lambda} \dot{f_{\lambda}}$. Therefore $C_q(E)$ is universally continuous. Q.E.D.

Collecting the results of Lemma 1~Lemma 5, we obtain

Theorem 1. The cut extension of C(E) is isomorphic to $C_q(E) = C_q(E)/N$.

§3. An element $f \in B(E)$ is called normal quasi-continuous, if $f_* = (f^*)_*$ and $f^* = (f_*)^*$ hold. Let \mathfrak{M} be the totality of all normal quasi-continuous functions belonging to $C_q(E)$. It is evident that $C(E) \subset \mathfrak{M} \subset C_q(E)$, hence we may consider \mathfrak{M}/N , i.e. the image $q(\mathfrak{M})$ of \mathfrak{M} by the quotient mapping $q: C_q(E) \xrightarrow{q} C_q(E)/N$. For each $f \in C_q(E)$, let f^* be defined by the formula:

$$f^{\times}(x) = \inf_{x \in U} \{\sup_{y \in UA'} f(x)\} \quad (x \in E),$$

where A is a set of the first category such that f is continuous on A'. Then f^* is normal upper semi-continuous ([3], Theorem 17 in §62), i.e. $((f^*)_*)^* = f^*$ and obviously $f^* \in \mathfrak{M}$ with $f^* - f \in N$. Therefore we may see that $\mathfrak{M}/N = C_q(E)/N$ holds. From this and Theorem 1 it follows that \mathfrak{M}/N is a universally continuous semi-ordered linear space.

Now we introduce an equivalent relation (I) in \mathfrak{M} as follows:

 $f \stackrel{def.}{=} g$ (I) $f, g \in \mathfrak{M}$ if and only if

 $g_* \leq f \leq g^*$ (or equivalently $f_* \leq g \leq f^*$).

We denote by $C_{nq}(E)$ the space of the equivalence-classes of \mathfrak{M} by the relation (I). Clearly we may define an order relation of $C_{nq}(E)$, that is, for any $M_1, M_2 \in C_{nq}(E)$ we write $M_1 \leq M_2$ if and only if $f_* \leq g_*$ (or $f^* \leq g^*$) holds,¹²⁾ where $f \in M_1$ and $g \in M_2$ respectively.

12) Indeed, as $f, g \in \mathfrak{M}$, $f_* \leq g_*$ implies $f^* \leq g^*$ and conversely.

No. 8]

Let $f, g \in \mathfrak{M}$ with $f - g \in N$. Then we have $g_* \leq f^*$ and $(g_*)^* \leq f^*$. As g is normal upper semi-continuous, we obtain

$$g \leq g^* = (g_*)^* \leq f^*$$

Similarly we can show that $f-g \in N$ implies $f_* \leq g$. Hence we may conclude that $f \equiv g$ (N) implies $f \equiv g$ (I) for $f, g \in \mathfrak{M}$. On the other hand, since $f^*(x) = f_*(x)$ holds for every $x \in EA'_r$ for any $f \in \mathfrak{M}$, $f \equiv g$ (I) implies $f \equiv g$ (N). Therefore there exists an one to one mapping from $C_q(E)$ to $C_{nq}(E)$, which satisfies also $\dot{f} \leq \dot{g}$ if and only if $f \leq g$ (I) in \mathfrak{M} . Since we can see easily that $C_{nq}(E)$ comes to be linear space in virtue of this mapping, we obtain by virtue of Theorem 1

Theorem 2. The cut extension of C(E) is isomorphic to $C_{nq}(E)$, that is, the space of all normal quasi-continuous functions on E, where two elements f, g are identified if their upper functions (or equivalently lower functions) coincide.

References

- [1] G. Birkhoff: Lattice theory, Amer. Math. Soc. Coll. Publications, 25 (1949).
- [2] R. P. Dilworth: The normal completion of the lattice of continuous functions, Trans. Amer. Math. Society, 68 (1950).
- [3] H. Nakano: Measure theory II (in Japanese), Tokyo (1948).
- [4] ——: Modern spectral theory, Tokyo (1950).
- [5] —: Ueber das System aller stetigen Funktionen auf einen topologischen Raum, Proc. Imp. Acad., 17, 823-844 (1941).
- [6] M. H. Stone: A general theory of spectra, I, Proc. Nat. Acad. Sci. U.S.A., 26, 280-283 (1940).