104. Relations among Topologies on Riemann Surfaces. III

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaido University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Proposition 3. $\{p_n^1\}$ and $\{p_n^2\}$ determine the same K-Martin's point relative to ${}_{l}\mathfrak{D}_{\infty}$ for every l.

Domain $_{l}\Omega$ and Ω . Put $\mathfrak{D}^{*} = \Re - \tilde{s}_{0} - \sum_{n=1}^{\infty} (s_{n}^{1} + s_{n}^{2} + s_{n}^{3} + \tilde{s}_{n} + R_{n} - \Lambda_{n})$ $(=_{1}\mathfrak{D}_{\infty})$. Let Γ'_{n} be a simply connected domain containing R_{n} such that $\partial\Gamma'_{n}$ intersects Λ_{n} such that

$$\Gamma'_{n}: \alpha - 0.75 \leq Re \ z \leq \alpha + 0.75, \ \frac{6}{2^{n}} - \frac{6}{2^{n+3}} \leq Im \ z \leq \frac{6}{2^{n}} - \frac{6}{2^{n+3}},$$

where $\alpha = 1.5$ or 4.5 according as n is odd or even.

Let T_n be a system of vertical segments in R_n such that

$$T_{n} = \sum_{i=0}^{n} t_{n}^{i},$$

$$t_{n}^{i} : Re \ z = \alpha + \frac{i}{k}, \quad \frac{6}{2^{n}} - \frac{6}{2^{n+4}} \le Im \ z \le \frac{6}{2^{n}} + \frac{6}{2^{n+4}}.$$

Fig. 5

Z. KURAMOCHI

where $\alpha = 1$ or 4 according as n is odd or even and $i = 0, 1, 2, \dots k$.

Let $G(z, z_0, \mathfrak{D}^*)$ be the Green's function of \mathfrak{D}^* . Put $N_n = \min G(z, z_0, \mathfrak{D}^*)$ on $\partial \mathcal{L}'_0 + \partial \Gamma'_n$ as z_0 varies in \mathcal{L}_0 . Then $N_n > 0$. Let $G^{T_n}(z, z_0, \mathfrak{R})$ and $G^{R_n}(z, z_0, \mathfrak{R})$ be Green's functions of $\mathfrak{R} - T_n$ and $\mathfrak{R} - R_n$ respectively. Since $G^{T_n}(z, z_0, \mathfrak{R}) \to G^{R_n}(z, z_0, \mathfrak{R})$ uniformly on $\partial \mathcal{L}'_0 + \partial \Gamma'_n$ independent of z_0 as $k(n) \to \infty$, there exists a number k(n) such that

$$G^{T_n}(z, z_0, \mathfrak{R}) - G^{R_n}(z, z_0, \mathfrak{R}) \leq \frac{1}{4^n} G(z, z_0, \mathfrak{D}^*) \text{ on } \partial \mathcal{I}_0' + \partial \Gamma_n' \text{ for any } z_0 \in \mathcal{I}_0.$$
(12)

We suppose T_n is defined as above.

Put ${}_{i}\Omega = \Re - \tilde{s}_{0} - \sum_{1}^{\infty} (s_{n}^{1} + s_{n}^{2} + s_{n}^{3} + \tilde{s}_{n} + R_{n} - \Lambda_{n}) + \sum_{1}^{l} (R_{n} - T_{n})$ and Ω = $\lim_{i} {}_{i}\Omega$. Then ${}_{i}\mathfrak{D}_{\infty} - {}_{i}\Omega$ is compact in ${}_{i}\mathfrak{D}_{\infty}$. Hence by proposition 3 and by lemma 1 we have

Proposition 4. $\{p_n^1\}$ and $\{p_n^2\}$ determine the same K-Martin's point relative to ${}_{l}\Omega$ for every l.

Now $\Omega_{-i}\Omega = \sum_{l=1}^{\infty} (R_n - T_n)$. We shall show that $\{p_n^1\}$ and $\{p_n^2\}$ determine the same K-Martin's point relative to Ω .

We denote by $G^{A}(z, z_{0}, B)$ the Green's function of B-A. By $T_{n} \subset \partial \Omega$, $G^{T_{n}}(z, z_{0}, \Omega) = G^{\Sigma^{T_{n}}}(z, z_{0}, \Omega) = G(z, z_{0}, \Omega)$. We have by $D^{*} \subset \Omega$ $\subset \Re$ and by (12) and by lemma 4 (putting $T_{n} = F_{2} \subset R_{n} = F_{1}, 0 = E_{2}$ $\subset E_{1} = \Re - \Omega$) $G^{T_{n}}(z, z_{0}, \Omega) - G^{R_{n}}(z, z_{0}, \Omega) \leq G^{T_{n}}(z, z_{0}, \Re) - G^{R_{n}}(z, z_{0}, \Re)$ $\leq \frac{1}{4^{n}}G(z, z_{0}, D^{*}) \leq \frac{1}{4^{n}}G(z, z_{0}, \Omega)$ on $\partial \mathcal{I}_{0}' + \partial \Gamma'_{n}$ for any $z_{0} \in \mathcal{I}_{0}$. Now $G^{T_{n}}(z, z_{0}, \Omega) - G^{R_{n}}(z, z_{0}, \Omega) = 0 = G(z, z_{0}, \Omega)$ on $\partial \mathcal{I}_{n} - \Gamma'_{n}$ and $G^{T_{n}}(z, z_{0}, \Omega)$ $- G^{R_{n}}(z, z_{0}, \Omega) \leq \frac{1}{4^{n}}G(z, z_{0}, \Omega)$ on $\partial \mathcal{I}_{0}' + \partial \Gamma'_{n}$. Hence by the maximum principle $G^{T_{n}}(z, z_{0}, \Omega) - G^{R_{n}}(z, z_{0}, \Omega) \leq \frac{1}{4^{n}}G(z, z_{0}, \Omega) \leq \frac{1}{4^{n}}G(z, z_{0}, \Omega)$ in $\Omega - \mathcal{I}_{0}' - \Gamma'_{n}$. Thus

$$G^{I_{+1}^{\sum T_n}}(z, z_0, \Omega) - G^{I_{+1}^{\sum R_n}}(z, z_0, \Omega) \leq \sum_{l+1}^{\infty} (G^{T_n}(z, z_0, \Omega) - G^{R_n}(z, z_0, \Omega))$$
$$\leq \sum_{l+1}^{\infty} \frac{1}{4^n} G(z, z_0, \Omega) \quad \text{in } \Omega - \mathcal{I}_0' - \sum \Gamma_n'.$$

Now $\Omega - \sum_{l=1}^{\infty} R_n = {}_l \Omega$ and $G^{\sum_{l=1}^{n} R_n}(z, z_0, \Omega) = G(z, z_0, {}_l \Omega)$, whence $G(z, z_0, \Omega) - G(z, z_0, \Omega_l) \leq \sum_{l=1}^{\infty} \frac{1}{4^n} G(z, z_0, \Omega)$ in $\Omega - \sum_{l=1}^{\infty} \Gamma'_n - \Delta'_0$

for any $z_0 \in \mathcal{A}_0$.

On the other hand, $p_n^i \in \Omega - \sum_{n=1}^{\infty} \Gamma'_n - \Delta'_0$ and $\Omega_i \uparrow \Omega$. Hence by Proposition 4 and by Lemma 5 $\{p_n^1\}$ and $\{p_n^2\}$ determine the same K-Martin's point relative to Ω .

We shall show that there exist subsequences $\{p_{n'}^1\}$ and $\{p_{n'}^2\}$ of $\{p_n^1\}$ and $\{p_n^2\}$ which determine different *N*-Martin's points relative to

464

No. 8]

 Ω . Put $\Omega' = \Omega - \Delta_0$. Let N(z, p) be an N-Green's function of Ω' such that N(z, p) = 0 on $\partial \Delta_0$, N(z, p) has a positive logarithmic singularity at p and has minimal Dirichlet integral. Let U(z) be a Dirichlet bounded harmonic function in Ω' such that U(z) has minimal Dirichlet integral and U(z) = -1 on $\partial \Delta_0^1$ and U(z) = 1 on $\partial \Delta_0^2$. Then

$$U(p_n^i) = \frac{1}{2\pi} \int_{\partial J_0} U(z) \frac{\partial}{\partial n} N(z, p_n^i) ds.$$
 (13)

Put $C_n: C_n = E\left[z: \left|z-3-3\left(\frac{1}{2^n}+\frac{1}{2^{n-1}}\right)i\right| < \frac{6}{2^{n+2}}\right]$ and let C'_n be a circle with the same centre as C_n with radius $= a_n: \log \frac{(6/2^{n+2})}{a_n} = m_n$. Let U'(z) be a continuous function in Ω' such that U(z) = -1 in $E[z:z \in \Omega', Re\ z < 3] - \sum_{1}^{\infty} C_n$, U(z) = 1 in $E[z:z \in \Omega', Re\ z > 3] - \sum_{1}^{\infty} C_n$ and U'(z)is harmonic in $\sum_{n=1}^{\infty} (C_n - C'_n)$ and U'(z) = 0 in $\sum C'_n$. Then D(U'(z)) $= \sum_{n=1}^{\infty} D_{C_n}(U'(z)) = 2\pi \sum \left(\frac{1}{m_n}\right) < \frac{1}{32}$. Hence by the Dirichlet principle $D(U(z)) \leq D(U'(z)) < \frac{1}{32}$. Consider the behaviour of U(z) on the domain:

Fig. 6

Z. KURAMOCHI

[Vol. 38,

$$\begin{split} 4 &< Re\ z < 5,\ 4 > Im\ z > \frac{1}{2} \Big(\frac{6}{2^n} + \frac{6}{2^{n+1}} \Big) = y_n. \text{ Then by Lemma 2, } D(U(z)) \\ &\geq \int |U(x+iy_n) - U(x+4i)|^2 ds. \text{ Put } L_n^2 = E[z:5 < Re\ z < 6,\ Im\ z = y_n] \\ \text{and } L_n^1 = E[z:1 < Re\ z < 2,\ Im\ z = y_n]. \text{ Assume the measure of } \\ E\Big[z \in L_n^2: U(z) \geq \frac{1}{2}\Big] \text{ is larger than } \frac{1}{2}. \text{ Then } \frac{1}{32} \geq D(U(z)) \geq \Big(\frac{1}{4}\Big) \times \frac{1}{2} \\ &= \frac{1}{16}. \text{ This is a contradiction. Hence there exists a set } \overset{*}{L_n^2} \text{ in } L_n^2 \\ \text{of positive measure } \Big(>\frac{1}{2}\Big) \text{ in which } U(z) > \frac{1}{2}. \text{ Choose a point } p_n^2 \text{ in } \\ \overset{*}{L_n^2} \text{ and also choose a subsequence } p_n^2 \text{ from } \{p_n^2\} \text{ such that } \{p_{n'}^2\} \text{ determine an N-Martin's point of Ω'. Then <math>\lim_{n'} U(p_{n'}^2) \geq \frac{1}{2}$. Similarly we \\ \text{can choose } p_{n'}^1 \text{ in } L_n^1 \text{ such that } \varlimsup_{n'} U(p_{n'}^1) \leq -\frac{1}{2} \text{ and a subsequence } \\ \{p_{n'}^1\} \text{ determining an N-Martin's point. Assume } \{p_{n'}^1\} \text{ and } \{p_{n'}^2\} \text{ determine the same point. Then by (13) } \lim_{n'} U(p_{n'}^1) = \lim_{n'} U(p_{n'}^2). \text{ This is a contradiction. Hence } \\ p_{n'}^1\} \text{ determine the same point. Then by (13) } \lim_{n'} U(p_{n'}^1) = \lim_{n'} U(p_{n'}^2). \text{ This is a contradiction. Hence } \\ p_{n'}^1\} \text{ determine different N-Martin's point s relative to Ω. But } \\ p_{n'}^2\} \text{ determine different N-Martin's point relative to Ω. Thus $KM,T \to NM,T$. \\ \end{array}$$

We shall show $NM.T \succ KM.T$. Y. Toki¹⁾ constructed a Riemann surface R with following properties: 1°). R is a covering surface over |z| < 1. 2°) R is obtained by connecting infinitely many leaves which are identical to the unit circle. 3°) $R \subset O_{HD}$ and $R \notin O_{AB}$. We see easily that every boundary point of R is regular for the Green's function. Hence by Theorem 16²⁰ every boundary point of R with respect to N-Martin's topology is singular of second kind (if the harmonic measure of a point p is positive, we call p a singular point of second kind). Hence also by the same theorem there exists only one N-Martin's boundary point. On the other hand, $O_{AB} \Rightarrow R$ implies that R has no singular K-Martin's boundary point (if the harmonic measure of a point is positive, we call it singular) and R has infinitely many K-Martin's boundary points. This example shows $NM.T \Rightarrow KM.T$. But it is more interesting to show NM.T $\Rightarrow KM.T$ by an example of a Riemann surface of planer character.

Lemma 7. Let R be a Riemann surface and let G be its subdomain. Let $\{v_n\}$ be a decreasing sequence of domain such that $\bigcap v_n = 0$. Let U(z)(V(z)) be a positive harmonic function in R(G)

¹⁾ Y. Tôki: On the examples in the classification of open Riemann surfaces, Osaka Math. J., 5 (1953).

²⁾ Z. Kuramochi: Singular points of Riemann surfaces, Journ. Hokkaido Univ., (1962).

No. 8]

such that U(z)(V(z)) is the least positive harmonic function in $R - v_n(G-v_n)$ larger than U(z)(V(z)) on ∂v_n . Let $\frac{v_n}{inex}U(z)(\frac{v_n}{ex}V(z))$ be the positive least harmonic function in $G-v_n(R-v_n)$ larger than U(z)(V(z)) on ∂v_n . Then $\frac{v_n}{inex}U(z)\downarrow(\frac{v_n}{ex}V(z)\uparrow)$. We denote this limit by $i_{nex}U(z)$ (from R to G relative to v_n) ($e_xV(z)$ (from G to R relative to v_n). Then

$$if_{ex}V(z) < \infty, \quad V(z) = _{inex}(_{ex}V(z)).^{3}$$

$$(14)$$

Let G_1 and G_2 be domains such that $G_1 \cap G_2 = 0$ and $V^i(z)$ be a harmonic function in G_i with $V^i(z) = 0$ on ∂G_i . Then $_{ex}V^1(z)(<\infty)$ and $_{ex}V^2(z)(<\infty)$ are linearly independent.³⁾

Lemma 8. Let R and G be those of Lemma 7. Let p_0 be a fixed point in G and let $\{p_n^i\}$ be a sequence such that $K(z, p_n^i, G)$ $\left(=\frac{G(z, p_n^i, G)}{G(p_0, p_n^i, G)}\right)$ and $K(z, p_n^i, R)\left(\frac{G(z, p_n^i, R)}{G(p_0, p_n^i, R)}\right)$ converge to $K(z, \{p_n^i\}, G)$ and $K(z, \{p_n^i\}, R)$. Let $\{v_n\}$ be a decreasing domains such that $v_n \ge p_n^i, p_{n+1}^i \cdots$ and $\bigcap v_n = 0$. If there exists a constant M such that $G(p_n, p_0^i, R) < MG(p_n, p_0^i, G)$ for $n \ge n_0$, then $e_x K(z, \{p_n^i\}, G) < \infty$. Suppose $K(z, \{p_n^1\}, G)$ and $K(z, \{p_n^2\}, G)$ are linearly independent. Then by (14) we see at once $e_x K(z, \{p_n^1\}, G)$ and $e_x K(z, \{p_n^2\}, G)$ are linearly independent.

Now
$$K(z, p_n, R) = \frac{G(z, p_n, R)}{G(p_0, p_n, R)} \ge \frac{G(z, p_n, G)}{MG(p_0, p_n, G)} = \frac{K(z, p_n, G)}{M}$$
. Since

 $\begin{array}{ll} K(z,\,p_n,\,R) & \text{is positive in } R \text{ and } K(z,\,p_n,\,R) \! > \! \frac{K(z,\,p_n,\,G)}{M} & \text{for } n \geq n_0, \\ \infty \! > \! K(z,\{p_n\},R) \! > \! \frac{_{ex}K(z,\{p_n\},G)}{M}. & \text{Hence } \infty \! > \! K(z,\{p_n\},R) \! > \! \frac{_{ex}K(z,\{p_n\},G)}{M}. \end{array}$

³⁾ Z. Kuramochi: Relations between harmonic dimensions, Proc. Japan Acad., (1954).