104. Relations among Topologies on Riemann Surfaces. III

By Zenjiro Kuramochi
Mathematical Institute, Hokkaido University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1962)
Proposition 3. $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to ${ }_{l} \mathfrak{D}_{\infty}$ for every l.

Domain ${ }_{l} \Omega$ and Ω. Put $\mathfrak{D}^{*}=\mathfrak{R}-\tilde{s}_{0}-\sum_{n=1}^{\infty}\left(s_{n}^{1}+s_{n}^{2}+s_{n}^{3}+\tilde{s}_{n}+R_{n}-\Lambda_{n}\right)$ $\left(={ }_{1} \mathfrak{D}_{\infty}\right)$. Let Γ_{n}^{\prime} be a simply connected domain containing R_{n} such that $\partial \Gamma_{n}^{\prime}$ intersects Λ_{n} such that

$$
\Gamma_{n}^{\prime}: \alpha-0.75 \leqq R e z \leqq \alpha+0.75, \frac{6}{2^{n}}-\frac{6}{2^{n+3}} \leqq \operatorname{Im} z \leqq \frac{6}{2^{n}}-\frac{6}{2^{n+8}},
$$

where $\alpha=1.5$ or 4.5 according as n is odd or even.
Let T_{n} be a system of vertical segments in R_{n} such that

$$
\begin{gathered}
T_{n}=\sum_{i=0}^{n} t_{n}^{i} \\
t_{n}^{i}: R e z=\alpha+\frac{i}{k}, \quad \frac{6}{2^{n}}-\frac{6}{2^{n+4}} \leqq \operatorname{Im} z \leqq \frac{6}{2^{n}}+\frac{6}{2^{n+4}},
\end{gathered}
$$

Fig. 5
where $\alpha=1$ or 4 according as n is odd or even and $i=0,1,2, \cdots k$.
Let $G\left(z, z_{0}, \mathfrak{D}^{*}\right)$ be the Green's function of \mathfrak{D}^{*}. Put $N_{n}=\min G(z$, $\left.z_{0}, \mathfrak{D}^{*}\right)$ on $\partial \Delta_{0}^{\prime}+\partial \Gamma_{n}^{\prime}$ as z_{0} varies in Δ_{0}. Then $N_{n}>0$. Let $G^{T_{n}}\left(z, z_{0}, \mathfrak{R}\right)$ and $G^{R_{n}}\left(z, z_{0}, \mathfrak{R}\right)$ be Green's functions of $\Re-T_{n}$ and $\Re-R_{n}$ respectively. Since $G^{T_{n}}\left(z, z_{0}, \mathfrak{R}\right) \rightarrow G^{R_{n}}\left(z, z_{0}, \mathfrak{R}\right)$ uniformly on $\partial \Delta_{0}^{\prime}+\partial \Gamma_{n}^{\prime}$ independent of z_{0} as $k(n) \rightarrow \infty$, there exists a number $k(n)$ such that
$G^{T_{n}}\left(z, z_{0}, \mathfrak{R}\right)-G^{R_{n}}\left(z, z_{0}, \mathfrak{R}\right) \leqq \frac{1}{4^{n}} G\left(z, z_{0}, \mathfrak{D}^{*}\right)$ on $\partial \Delta_{0}^{\prime}+\partial \Gamma_{n}^{\prime}$ for any $z_{0} \in \Delta_{0}$.
We suppose T_{n} is defined as above.
Put ${ }_{l} \Omega=\Re-\tilde{s}_{0}-\sum_{1}^{\infty}\left(s_{n}^{1}+s_{n}^{2}+s_{n}^{3}+\tilde{s}_{n}+R_{n}-\Lambda_{n}\right)+\sum_{1}^{l}\left(R_{n}-T_{n}\right)$ and Ω $=\lim _{l} \Omega$. Then $\mathscr{D}_{\infty}-{ }_{l} \Omega$ is compact in \mathfrak{D}_{∞}. Hence by proposition 3 and by lemma 1 we have

Proposition 4. $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to ${ }_{l} \Omega$ for every l.

Now $\Omega-{ }_{l} \Omega=\sum_{i+1}^{\infty}\left(R_{n}-T_{n}\right)$. We shall show that $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to Ω.

We denote by $G^{A}\left(z, z_{0}, B\right)$ the Green's function of $B-A$. By $T_{n} \subset \partial \Omega, G^{T_{n}}\left(z, z_{0}, \Omega\right)=G^{\Sigma T_{n}}\left(z, z_{0}, \Omega\right)=G\left(z, z_{0}, \Omega\right)$. We have by $D^{*} \subset \Omega$ $\subset \mathfrak{M}$ and by (12) and by lemma 4 (putting $T_{n}=F_{2} \subset R_{n}=F_{1}, 0=E_{2}$ $\left.\subset E_{1}=\Re-\Omega\right) \quad G^{T} n\left(z, z_{0}, \Omega\right)-G^{R} n\left(z, z_{0}, \Omega\right) \leqq G^{T} n\left(z, z_{0}, \mathfrak{R}\right)-G^{R}\left(z, z_{0}, \Re\right)$ $\leqq \frac{1}{4^{n}} G\left(z, z_{0}, D^{*}\right) \leqq \frac{1}{4^{n}} G\left(z, z_{0}, \Omega\right)$ on $\partial \Delta_{0}^{\prime}+\partial \Gamma_{n}^{\prime}$ for any $z_{0} \in \Delta_{0}$. Now $G^{T} n\left(z, z_{0}, \Omega\right)-G^{R_{n}}\left(z, z_{0}, \Omega\right)=0=G\left(z, z_{0}, \Omega\right)$ on $\partial \Omega_{n}-\Gamma_{n}^{\prime}$ and $G^{T n}\left(z, z_{0}, \Omega\right)$ $-G^{R_{n}}\left(z, z_{0}, \Omega\right) \leqq \frac{1}{4^{n}} G\left(z, z_{0}, \Omega\right)$ on $\partial \Delta_{0}^{\prime}+\partial \Gamma_{n}^{\prime}$. Hence by the maximum principle $G^{T_{n}}\left(z, z_{0}, \Omega\right)-G^{R_{n}}\left(z, z_{0}, \Omega\right) \leqq \frac{1}{4^{n}} G\left(z, z_{0}, \Omega\right)$ in $\Omega-\Delta_{0}^{\prime}-\Gamma_{n}^{\prime}$. Thus

$$
\begin{aligned}
& G^{G^{\sum+1} T_{n}}\left(z, z_{0}, \Omega\right)-G^{\sum_{+1} R_{n}}\left(z, z_{0}, \Omega\right) \leqq \sum_{l+1}^{\infty}\left(G^{T_{n}}\left(z, z_{0}, \Omega\right)-G^{R_{n}}\left(z, z_{0}, \Omega\right)\right) \\
& \quad \leqq \sum_{l+1}^{\infty} \frac{1}{4^{n}} G\left(z, z_{0}, \Omega\right) \quad \text { in } \Omega-\Delta_{0}^{\prime}-\sum \Gamma_{n}^{\prime} .
\end{aligned}
$$

Now $\Omega-\sum_{l+1}^{\infty} R_{n}={ }_{l} \Omega$ and $G^{\sum^{\sum_{1}} R_{n}}\left(z, z_{0}, \Omega\right)=G\left(z, z_{0}, l \Omega\right)$, whence

$$
G\left(z, z_{0}, \Omega\right)-G\left(z, z_{0}, \Omega_{l}\right) \leqq \sum_{l+1}^{\infty} \frac{1}{4^{n}} G\left(z, z_{0}, \Omega\right) \quad \text { in } \Omega-\sum_{l+1}^{\infty} \Gamma_{n}^{\prime}-\Delta_{0}^{\prime}
$$

for any $z_{0} \in \Delta_{0}$.
On the other hand, $p_{n}^{i} \in \Omega-\sum^{\infty} \Gamma_{n}^{\prime}-\Delta_{0}^{\prime}$ and $\Omega_{l} \uparrow \Omega$. Hence by Proposition 4 and by Lemma $5\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to Ω.

We shall show that there exist subsequences $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ of $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ which determine different N-Martin's points relative to
Ω. Put $\Omega^{\prime}=\Omega-\Delta_{0}$. Let $N(z, p)$ be an N-Green's function of Ω^{\prime} such that $N(z, p)=0$ on $\partial \Delta_{0}, N(z, p)$ has a positive logarithmic singularity at p and has minimal $\stackrel{*}{\text { Dirichlet integral. Let } U(z) \text { be a Dirichlet }}$ bounded harmonic function in Ω^{\prime} such that $U(z)$ has minimal Dirichlet integral and $U(z)=-1$ on $\partial \Delta_{0}^{1}$ and $U(z)=1$ on $\partial \Delta_{0}^{2}$. Then

$$
\begin{equation*}
U\left(p_{n}^{i}\right)=\frac{1}{2 \pi} \int_{\partial \Lambda_{0}} U(z) \frac{\partial}{\partial n} N\left(z, p_{n}^{i}\right) d s \tag{13}
\end{equation*}
$$

Put $C_{n}: C_{n}=E\left[z:\left|z-3-3\left(\frac{1}{2^{n}}+\frac{1}{2^{n-1}}\right) i\right|<\frac{6}{2^{n+2}}\right]$ and let C_{n}^{\prime} be a circle with the same centre as C_{n} with radius $=a_{n}: \log \frac{\left(6 / 2^{n+2}\right)}{a_{n}}=m_{n}$. Let $U^{\prime}(z)$ be a continuous function in Ω^{\prime} such that $U(z)=-1$ in $E[z: z$ $\left.\in \Omega^{\prime}, R e z<3\right]-\sum_{1}^{\infty} C_{n}, U(z)=1$ in $E\left[z: z \in \Omega^{\prime}, R e z>3\right]-\sum_{1}^{\infty} C_{n}$ and $U^{\prime}(z)$ is harmonic in $\sum_{n=1}^{\infty}\left(C_{n}-C_{n}^{\prime}\right)$ and $U^{\prime}(z)=0$ in $\sum C_{n}^{\prime}$. Then $D\left(U^{\prime}(z)\right)$ $=\sum_{n=1}^{\infty} D_{c_{n}}\left(U^{\prime}(z)\right)=2 \pi \sum\left(\frac{1}{m_{n}}\right)<\frac{1}{32}$. Hence by the Dirichlet principle $D(U(z)) \leqq D\left(U^{\prime}(z)\right)<\frac{1}{32}$. Consider the behaviour of $U(z)$ on the domain:

Fig. 6
$4<R e z<5,4>\operatorname{Im} z>\frac{1}{2}\left(\frac{6}{2^{n}}+\frac{6}{2^{n+1}}\right)=y_{n}$. Then by Lemma 2, $D(U(z))$ $\geqq \int\left|U\left(x+i y_{n}\right)-U(x+4 i)\right|^{2} d s$. Put $L_{n}^{2}=E\left[z: 5<\operatorname{Re} z<6\right.$, Im $\left.z=y_{n}\right]$ and $L_{n}^{1}=E\left[z: 1<\operatorname{Re} z<2\right.$, $\left.\operatorname{Im} z=y_{n}\right]$. Assume the measure of $E\left[z \in L_{n}^{2}: U(z) \geqq \frac{1}{2}\right]$ is larger than $\frac{1}{2}$. Then $\frac{1}{32} \geqq D(U(z)) \geqq\left(\frac{1}{4}\right) \times \frac{1}{2}$ $=\frac{1}{16}$. This is a contradiction. Hence there exists a set $\stackrel{*}{L_{n}^{2}}$ in L_{n}^{2} of positive measure $\left(>\frac{1}{2}\right)$ in which $U(z)>\frac{1}{2}$. Choose a point p_{n}^{2} in $\stackrel{*}{L}_{n}^{2}$ and also choose a subsequence $p_{n^{\prime}}^{2}$ from $\left\{p_{n}^{2}\right\}$ such that $\left\{p_{n}^{2}\right\}$ determine an N-Martin's point of Ω^{\prime}. Then $\frac{\lim }{n^{\prime}} U\left(p_{n^{\prime}}^{2}\right) \geqq \frac{1}{2}$. Similarly we can choose $p_{n^{\prime}}^{1}$ in L_{n}^{1} such that $\varlimsup_{n^{\prime}} U\left(p_{n^{\prime}}^{1}\right) \leqq-\frac{1}{2}$ and a subsequence $\left\{p_{n^{1}}^{1}\right\}$ determining an N-Martin's point. Assume $\left\{p_{n^{\prime}}^{1}\right\}$ and $\left\{p_{n^{\prime}}^{2}\right\}$ determine the same point. Then by (13) $\lim _{n^{\prime}} U\left(p_{n^{\prime}}^{1}\right)=\lim _{n^{\prime}} U\left(p_{n^{\prime}}^{2}\right)$. This is a contradiction. Hence $\left\{p_{n^{\prime}}^{1}\right\}$ and $\left\{p_{n^{\prime}}^{2}\right\}$ determine different N-Martin's points relative to Ω. But $\left\{p_{n^{\prime}}^{i}\right\}$ is a subsequence of $\left\{p_{n}^{i}\right\}$, whence $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same K-Martin's point relative to Ω. Thus $K M . T \ngtr N M . T$.

We shall show NM.T $\succ K M . T$. Y. Toki ${ }^{1)}$ constructed a Riemann surface R with following properties: 1°). R is a covering surface over $|z|<1 . \quad 2^{\circ}$) R is obtained by connecting infinitely many leaves which are identical to the unit circle. 3°) $R \subset O_{H D}$ and $R \nsubseteq O_{A B}$. We see easily that every boundary point of R is regular for the Green's function. Hence by Theorem $16^{2)}$ every boundary point of R with respect to N-Martin's topology is singular of second kind (if the harmonic measure of a point p is positive, we call p a singular point of second kind). Hence also by the same theorem there exists only one N-Martin's boundary point. On the other hand, $O_{A B} \perp R$ implies that R has no singular K-Martin's boundary point (if the harmonic measure of a point is positive, we call it singular) and R has infinitely many K-Martin's boundary points. This example shows NM.T \Varangle KM.T. But it is more interesting to show NM.T $\Varangle K M . T$ by an example of a Riemann surface of planer character.

Lemma 7. Let R be a Riemann surface and let G be its subdomain. Let $\left\{v_{n}\right\}$ be a decreasing sequence of domain such that $\bigcap v_{n}=0$. Let $U(z)(V(z))$ be a positive harmonic function in $R(G)$

[^0]such that $U(z)(V(z))$ is the least positive harmonic function in R $-v_{n}\left(G-v_{n}\right)$ larger than $U(z)(V(z))$ on ∂v_{n}. Let $\left.{ }_{i n e x}^{v_{n}} U(z){ }_{\left(e_{x}\right.}^{v_{n}} V(z)\right)$ be the positive least harmonic function in $G-v_{n}\left(R-v_{n}\right)$ larger than $U(z)(V(z))$ on ∂v_{n}. Then $\left.{ }_{i n}^{v_{n e x}} U(z) \downarrow{ }_{e x}^{v_{n}} V(z) \uparrow\right)$. We denote this limit by ${ }_{\text {inex }} U(z)$ (from R to G relative to v_{n}) $\left(_{e x} V(z)\right.$ (from G to R relative to $\left.v_{n}\right)$). Then
\[

$$
\begin{equation*}
\text { if }{ }_{e x} V(z)<\infty, V(z)==_{\text {inex }}\left({ }_{e x} V(z)\right) .^{3)} \tag{14}
\end{equation*}
$$

\]

Let G_{1} and G_{2} be domains such that $G_{1} \cap G_{2}=0$ and $V^{i}(z)$ be a harmonic function in G_{i} with $V^{i}(z)=0$ on ∂G_{i}. Then ${ }_{e x} V^{1}(z)(<\infty)$ and ${ }_{e x} V^{2}(z)(<\infty)$ are linearly independent. ${ }^{3)}$

Lemma 8. Let R and G be those of Lemma 7. Let p_{0} be a fixed point in G and let $\left\{p_{n}^{i}\right\}$ be a sequence such that $K\left(z, p_{n}^{i}, G\right)$ $\left(=\frac{G\left(z, p_{n}^{i}, G\right)}{G\left(p_{0}, p_{n}^{i}, G\right)}\right)$ and $K\left(z, p_{n}^{i}, R\right)\left(\frac{G\left(z, p_{n}^{i}, R\right)}{G\left(p_{0}, p_{n}^{i}, R\right)}\right)$ converge to $K\left(z,\left\{p_{n}^{i}\right\}, G\right)$ and $K\left(z,\left\{p_{n}^{i}\right\}, R\right)$. Let $\left\{v_{n}\right\}$ be a decreasing domains such that v_{n} $\ni p_{n}^{i}, p_{n+1}^{i} \cdots$ and $\cap v_{n}=0$. If there exists a constant M such that $G\left(p_{n}, p_{0}^{i}, R\right)<M G\left(p_{n}, p_{0}^{i}, G\right)$ for $n \geqq n_{0}$, then ${ }_{e x} K\left(z,\left\{p_{n}^{i}\right\}, G\right)<\infty$. Suppose $K\left(z,\left\{p_{n}^{1}\right\}, G\right)$ and $K\left(z,\left\{p_{n}^{2}\right\}, G\right)$ are linearly independent. Then by (14) we see at once ${ }_{e x} K\left(z,\left\{p_{n}^{1}\right\}, G\right)$ and ${ }_{e x} K\left(z,\left\{p_{n}^{2}\right\}, G\right)$ are linearly independent.

Now $K\left(z, p_{n}, R\right)=\frac{G\left(z, p_{n}, R\right)}{G\left(p_{0}, p_{n}, R\right)} \geqq \frac{G\left(z, p_{n}, G\right)}{M G\left(p_{0}, p_{n}, G\right)}=\frac{K\left(z, p_{n}, G\right)}{M}$. Since $K\left(z, p_{n}, R\right)$ is positive in R and $K\left(z, p_{n}, R\right)>\frac{K\left(z, p_{n}, G\right)}{M}$ for $n \geqq n_{0}$, $\infty>K\left(z,\left\{p_{n}\right\}, R\right)>\frac{{ }_{e x} K\left(z,\left\{p_{n}\right\}, G\right)}{M}$. Hence $\infty>K\left(z,\left\{p_{n}\right\}, R\right)>\frac{e_{x} K\left(z,\left\{p_{n}\right\}, G\right)}{M}$.

[^1]
[^0]: 1) Y. Tôki: On the examples in the classification of open Riemann surfaces, Osaka Math. J., 5 (1953).
 2) Z. Kuramochi: Singular points of Riemann surfaces, Journ. Hokkaido Univ., (1962).
[^1]: 3) Z. Kuramochi: Relations between harmonic dimensions, Proc. Japan Acad., (1954).
