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Let {4}, S(2), #(2), and R(2) be the same notations as those de-
fined in the statement of Theorem 1 [3] respectively, and ¥'(2) the
second principal part of S(2) in the case where all the accumulation
points of {2,} form an uncountable set.

Since, by Theorem 1,

1 S(2) di— R®(2)
2ri J_ (=2 k!
for every point z 1n the interior of the circle |A|=p with sup|4,]

(k=0,1,2,8---)

<p< o, we obtain
27 S(pe”) die R%®(0)
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Consequently R(2) is expansible, on the domain {1:]|1|< ]}, in
terms of integrals concerning the given funetion S(1) itself.

In this paper I have mainly two purposes: one is to find the
expressions of @(2) and ¥(2) in terms of integrals concerning S(1)
itself respectively, the other is to establish the relation between the
maximum-modulus of S(2) on the circle |2—c¢|=p, containing {1,} and
all the accumulation points of {1,} inside itself and that of E(1) on
the circle |1—c|=p, with p,<p,.

Theorem 4. If the set of all the accumulation points of {4,} is
uncountable, then the second prinecipal part (1) of S(2) in Theorem
1 is expressible in the form
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for every & with 0</c<1 and every p Wlth sup |4, |<p<oo; and if,

contrary to this, the set of all the acecumulation points of {1,} is
countable, then

m [ il
2 3»><£Ef_ —L) =1 it 1—¢* dt
(2) EZ'C P 27 (p ) 14 £*—2¢ cos (0—1)

— S(oe* ———-dt
271'»0[ (0e) et —ret?




No. 8] Some Applications of the Functional-Representations. II 453

for such x, p as above.
Proof. It first follows from Theorem 1 that for every point z
on the domain {z:|z|<p} with sup|1,|<p<
1 S(2)
R(2)=—— | 2LLd2
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where the curvilinear integrations are taken in the counterclock-
wise direction.

Suppose now that all the accumulation points of {i,} form an
uncountable set. Then the second principal part Z'(2) of the given
function S(1) never vanishes, as we already pointed out in the earlier

5 2
discussion. If we put z=7re? for the above 2z, the point —@—zf—e”’

z
lies outside the circle |2|=p. Henece, as can be found immediately

from Lemma [3] proved in the earlier discussion,
ol sl
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(4) o 2 )+w< )+ RO=1L MS(&)?_':gdt.

Adding the equalities (3) and (4) term by term, we have

(5) ( >+§If< >+R()"——f S(z)s%[“z]dt
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Remembering that

(1= EZ (2 ])

we obtain therefore
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which shows that the desired equality (1) holds for every « with

0<£<1 and every p with sup |2,|<o<oo.

Suppose next that all the accumulation points of {1,} form a
countable set. Then, as pointed out in the earlier discussion, ¥'(2)
vanishes, and hence the desired equality (2) is deduced immediately
from (1).

Corollary 1. If, in Theorem 4, there exist a positive number ¢
with sup |2,|<e< oo and countably infinite points r,6“s with sgp r,<ao

such that
f%ﬂ)—-dt 0 (j=1,23,-),

then

0 l_lc
6 S(ﬁi);i S(oe™) dt
(6) K 2r f (pe “1+k*—2k cos (6—t)

(0<£<1, sup|i,|<p< ),

where the complex Poisson integral of S on the right-hand side
converges uniformly to R(0) or to S(pe”) according as r tends to
zero or to unity.
Proof. By hypothesis, it is a matter of simple manipulations
to show that
1 - S() di= 1 - S di (z,=r,e", j=1,2,3).
271 m:”l—zj 2r1 Vime A
Accordingly we have R(z;)=R(0), j=1,2,8,---. In addition to
it, R(z) is regular on the domain {z:|z|<o}. As a result, R(?) is
a constant on the entire complex plane. Since, moreover, the equal-
ity (5) is rewritten in the form

S<-’§—>-R< >-|—R( )___f S(z)%[”z]dt

(2= pet, z_rew, r<p, sup |4, [|<p< ),

the desired equality (6) holds surely for every positive « less than
unity.
Next, from the relations
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1 it 1 S(2)
— | S(pe)dt =—— | =2LLdi=R(0
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and the boundedness of S(1) on the circle | i|=p, it is at once obvious
that the complex Poisson integral on the right-hand side of (6) con-
verges uniformly to E(0) as » tends to zero.

Since, furthermore, S(1) is regular on the circle |2|=p with
sup [4,|<p< oo, the real and imaginary parts of S(pe) both are

continuous as well as bounded on it and hence the Poisson integrals

1 /™ ; 1—4°
L 5 8(oe
271'»([ LS A = areos 0=0)

and

1 27 1 __‘,C2
L S(oe
27r[ SLS(ee)] 14 £*—2k cos (0 —t)

converge uniformly to R[S(pee”)] and JI[S(pe”)] respectively as «
tends to unity, as can be easily verified with the aid of very small
modifications of H. A. Schwarz’s theorem [1] for Poisson’s integral.
This result shows that the complex Poisson integral on the right-
hand side of (6) converges uniformly to S(ee”) as x tends to unity.

The corollary has thus been proved.

Remark. This corollary is valid, of course, for the case where
¥'(2) vanishes.

Corollary 2. Let the hypothesis of Corollary 1 be satisfied, and
let My(p,0) denote the maximum of the modulus |S(2)| of S(2) on
the circle |2]=p with sup |2,|<p<oo. Then Mg(o’, 0)< My(p, 0) for
any p’ greater than p. ’

Proof. Since S(1) is regular on any closed annular domain
{A: =2 =0’} with sup |2, |<p<p'<o and since

-l— ” 1—¢* dt=1,

2z 1+4£*—2¢ cos (0—t)
the present corollary is an obvious consequence of the maximum-
modulus principle and Corollary 1.

Theorem 5. Let {4}, S(1), and R(2) be the same notations as
those in Theorem 1 respectively; let ¢(3 ) be an arbitrarily given
point on the complex plane; let C, be any positively oriented circle
with center ¢ and radius p; such that it contains {1,} and all the
accumulation points of {1,} inside itself; let C, be any positively
oriented circle with center ¢ and radius p, less than p,; let M (p,,c)
=max |S(2)|; and let Mg(p,, c):r?gcga( |R(2)|. Then

M (p,, ¢)< p: Ms(p4, €) .
01— P2
Proof. Since R(2) is regular on the domain {1:|1—c|< o}, we
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have
o (n)
B@=5 TG0 (eCy,
where
E™(c) _ S(2)
n! 2m (2 c)”+1

Since, moreover, the last equallty yields
IR("‘)(GM :_1— fz" S(,016”+c) dt\< S(pu C)
n! 2zl oreim o7
where the equality sign in the last relation applies if and only if

the function S(p,e+c)/pte™ is a constant on the closed interval
[0, 27] of t [2], it is easily verified by direct computation that

lR(z) l < pIMS(pl’ C)

1 2
for every z¢C, In consequence, we obtain the inequality required
in the statement of the present theorem, as we wished to prove.
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