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1. Definitions. p, defined by

(1.1) [n- tndz(t) (n=0, 1, 2,...),*

where z(t) is a real function of bounded variation in (0, 1), is called
the moment constant of rank n generated by the mass-function z(t).
If, further,
(1.2) Z(1)--1, Z(+0) Z(0)- 0,*
p is said to be a egular moment constant.
The matrix (H, ), defined by

(1.3) ,_ {()J’- (nkk)
0

is termed the Hausdorff-matrix corresponding to the sequence of
moment constants [[.}. The summability (H, Z.) of a sequence Is.}
to the sum s is defined as the convergence to a finite limit s of its
Hausdorff transform, or simply (H, ,) transform, , where

(n-0, 2,...).

The transpose of the Hausdorff matrix, that is, the matrix
2*(H*, g), defined by

(1.5) 2,- {()-g (nk)
0

is termed the Quasi-Hausdorff matrix corresponding to the sequence
of moment constants [Z.}.

The sequence-to-sequence Quasi-Hausdorff transform, or simply
the (H*, ) transform, a* of a sequence {s} is defined by

(1.6) a* ()-Z s.
Since p is given by (1.1), we also have

(1.7) * ( )t(1 t)-gz(t).

* The function is defined at t=0 so as to be continuous; thus

m

The ssmption x(0)=0 is not substantial restriction.
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The summability (H*, Z) of a sequence {Sn} to the limit s is defined
as the convergence to a finite limit s of its (H*, Z) transform *.

It is well-known (see [2, Theorem 217, p. 217, p. 276) that the
necessary and sufficient conditions that the (H, Z) transform be
regular, that is, a-s whenever s-s, are:

(1.S) Z(1)= 1, Z(/0)=Z(0)=0.
We also know that if / is a regular moment constant generated by
the mass-function z(t), then the necessary and sufficient conditions
that the (H*, .) transform be regular are (see [2, Theorem 219,
p. 279; also notes on chapter XI, 11.20)

f lgz(t) l_<k<
t

(1.9)
f dz(t) 1.(ii) t

Borwein [lJ has recently defined the following logarithmic
method of summability, denoted by L.

A sequence [s} is said to be summable (L) to s, if

(1.10) L(x)----{log (1--x)}- s x/
,=0 n+l

tends to a finite limit s as x-l--0 in the right open interval (0, 1).
2. Introduction. Let A and B be two summability methods for

sequences {s}, and let us denote by AB the iteration-product which
associates with any given sequence the A-transform of its B-trans-
form (of course, provided it is possible to define it).

The question of determining under what circumstances AAB,
that is, A-summability implies AB-summability, was raised by Szsz
[9 in 1952 at the suggestion of Prof. I.M. Sheffer. And Szsz
himself demostrated in a couple of papers ([_9, [10) the truth of
a number of inclusion relations of this type by considering various
pairs of summability methods. Subsequently, this line of study has
been taken up by several workers like Rajagopal [_8_, Pati [5,
Ramanujan [6, Jakimovski [3_, Borwein [1] and Lal [4.

Borwein has established the inclusion relation:

(L)(L)(H, /n)
in the case in which (H,/) is regular.

The object of the present paper is to establish an inclusion rela-
tion between summability (L) and the product of summability (L)
and the Quasi-Hausdorff method of summability (H*,/.), which
corresponds to a mass-function, satisfying certain general conditions.

3. We shall write throughout

always denotes an absolute constant, not necessarily the same at each ocurence.
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We establish the following theorem.
Theorem. If (H*, ln) be a regular sequence-to-sequence Quasi-

Hausdorff method and the mass-function z(t) generating satisfies
the conditions:

and
as v o,

t
]dz(t)[-O log as ]->0.

then (L)(L)(H*, [).
Proof of the theorem.

We assume that L(x)->s, as x->l--O. We then have to prove
that, under the hypotheses of the theorem,

L.(x)-->s, as x->l--O.
We have, by (1.7),

(n* xn+l
,=o n+l

E xn+l s...1--t.)(
,=o n+l t

on writing 1--x--y.

Set now

g(t)-- s, (1_ t)+ 1; f(t)-- g(t)/log t

We have,, z* x/ g(t) dz(t)_ g(yt) pz(t)
,=o n+l t t

and therefore,
1 6n* xn+l--log(1 x) m- 1

(t)gz(t)
log t logy

1 fol d(t) 1 7ol d(t)f(yt) logyt f(t) logt
logy t logy t
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f(yt)--s t) 1 f(t)--s logt dz(t) -s
logy logy

Ii(y)-- If(y) + s,
using the condition (1.9) (ii), which holds in view of the regularity
of (H*,/). In view of the last step there occurs no loss of gene-
rality in assuming that s--0.

All the inversions involved in the foregoing steps are justified
by virtue of the absolute convergence of the integrals I(y) and I(y),
the proof of which fact is contained in that of (3.3).

We show below that, if f(t)-0(1), as t->0,
then, with s--0,

II(Y) 0(1), as y->0.(3.) .(y)
We have, with s=0,

1log
(y)=f f(yt) t dz(t)

1 tlog
Y

..y log I

J f(yt) yt d;(t)__ ff(t)
log- 1 t

Y
=L(y)+ [.(y), say.

We now introduce an additional notation.

log-

log-

1
yt dz(t)
1 t
Y

so that re(r)->0, as r->0.
We have

m(r)=max If(t)],

Also re(r) is a non-decreasing function of r.

dz(t) +I()1< If(t)
t

log 1
t Idz(t)

log1 t

1
z(t) +n()f-t

log
Y

--m(Y)[Im(Y)+ I2(y).
Evidently

m(y)I(y)--O(1), as y--->O.
Also, by hypothesis,

1
1 fflog-- Idz(t)lt -0(1),

log--
Y

as y->O,

and, therefore,
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as y-0.
Hence

Again, we have

(u).(y)-- o(),

(u)-o(1), as u-o.

1log.
1112(y) l=-- ff(yt) yt dz(t___)

1 ty log-
Y

<2fl] f(yt) dZ(t) [_since
t

Y

fl< If(Yt)l
t t

/{+)

y 1/l+y

=0(),
as yO.

We now have only to show that, with s--O,

log t t log t
Y Y

zAv)+ =(v), say.
Now

1 dz(t)

i[[ ]_<1ylf(t) log-1--
log--1- t t

Y

_<(y)-----ffog Idz(t)

log-1 t t
Y

--0(1),
as y-0, since we have assumed that

1 f’log_1__ dz(t)_______[ =0(1),
1 t tlog
Y

as y->O.
Now, integrating by parts,

1 flog 1

log__l v
t

Y

[az(t)l
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---0(1)-t-0(1)-O(1),
Dy pof,i (3,1),

is established.
4. Remarks. It may be observed that the conditions (3.1) and

(3.2) on the mass-function Z(t) are obviously satisfied for the follow-
ing well-known special cases:

(i) The ’Circle’ method (, a) (See Hardy 2, 9.11 and 11.21,
1]) for which

_
0 for 0<_tal;
a for at<l.

(ii) The methods defined by
z(t)- It+’1(+ 1) (1 > 0),

which are all equivalent to each other and to (C, 1)for different
positive values of 1. (See Hardy, [2], 11.21, [3.)
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