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95. Some Characterizations of Fourier Transforms. IV

By Koziro IwWASAKI
Musashi Institute of Technology, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1962)

1. Several years ago we proved
Theorem A. Let a continuous even function k(x) be the second
derivative of a bounded function, and

(1) 31 [Trnetyat= 33 o(m)

Sor every function ¢ with compact support of class C*. Then
k(x)=cos 2zx. (See [3].)
In what follow we shall give another proof of this theorem
calculating the kernel function k(x) explicitly.

2. If we apply the formula (1) to ¢*(z)=¢(xu) with u0 we get
(2) 2SR )= 3 etn),

(4]

where Y(x)= f mk(wt)go(t)dt, or

1
2|ul
Because the function ¢(x) is a function with compaet support and of

() WO +3 (L) = Lo +S o).

|ul

class C=, igo(nu) is defined and of class C* for any u=0, and the
n=1

support of this function is also compact.
On the other hand we have

\ / mk(xt)go(t)dtlgc- _xlz_ [T1erwlar

using the hypothesis on k(z), therefore

ol 1

S v(my=0(-1)

n=1 U
as % tends to infinity.

Now we shall calculate the Mellin-transform of the function
f}go(nu). Formally we get
n=1
(4) [ w5 ey du=C(s)0(),
/ =

where {(s) is the Riemann zeta-function and @(s) is the Mellin trans-

form of ¢(x). If we use the formula (8) we can transform the left
hand side of (4) as follows:
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Thus the Mellin-transform of ﬁ](p(nu) exists for Res>1. Similarly
n=1
f u* Si(nu)du is equal to the last term of the above equations
n=1

0
for Res>1.
Because ﬁgp(nu) and i«[r(nu) are uniformly convergent for u>1
n=1 n=1

and O(u"%), the last term of above equations is holomorphic for
Re s> —1 with possibly exceptional points 0 and 1. Therefore (4)
and

(5) f “un Sy () du=L(1—s)r (1)

have the meaning for Re s> —1, where ¥(s) is the Mellin-transform
of Y(x). But by the definition of y(x) we have

U(s)= - () da

=]wx8“< f “k(xt)go(t)dt)dx: f “x8-1<2 f “F(at) go(t)dt>dx
—2 f v f " (1) k(u)go(t)% du dt =2K(s)0(1—s),

where K(s) is the Mellin-transform of %(x). Therefore we get
C(s)D(s)=2L(1—3s)K(1—s)D(s)
and

1Z4d-s)_
()—2 ® (27)* cos"- F(S)

This means that
k(x)=cos 2nz.
(See [2] p. 204 (7.12.1).)
8. Using the similar method we can prove
Theorem B. Let k(x) be a continuous even function such that

f%(xt) exp (—t3)dt=0(z"1"*)
0
Jor some >0 as x tends to infinity, and

é oolc(’nt) exp (—t*u?)dt= _i exp (—n*u?)

7n=-—00
-—c0
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Jor any u>0. Then
k(x)=cos 2rx.
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