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Osaka University of Liberal Arts and Education
(Comm. by K. KuNuGI, M.J.A., Nov. 12, 1962)

The present note is a continuation of our previous paper on the
cohomological dimension of paracompact spaces [12]. In the previous
one we proved the following theorem:

Theorem 1.0 (Sum) Let X be a space and let {X,} be a countable

collection of closed sets of X such as GszX If each X, has
k=1

D(X,; G)<n, then we have D(X; G)=<n.

Hence, we shall prove the sum theorems of the another forms.

All spaces will be assumed to be paracompact Hausdorff spaces
and all coefficient groups will be assumed to be non-zero additive
Abelian groups.

Let D(X;G)® be the cohomological dimension with coefficient
group G defined as follows: D(X; G)<n if and only if for any closed
set A of X and for any integer m such as m =% the homomorphism
H™(X; G)>H™(A;G) induced by inclusion is onto where » is a non-
negative integer and H™(X;G), H™(A4; G) are n-th Cech cohomology
groups with coefficient group G.

We state now for reference the following two theorems to be
used below.

Theorem 2.° (Mayer-Vietoris) If X is a space and if X,, X,
are closed sets of X such as X=X, X,, then the following sequence
18 exact
- > HY(X;G)—>H"(X,;G) X HY(X; G)~>H"(X,~X,;;G)>H"* Y(X;G)—>- - - .

Theorem 3. (Katetov) If X is a collectionwise normal Haus-
dorff space, then for each closed set S of X and for each locally
finite open covering {U.} of S there exists a locally finite collection
{V.} of open sets of X satisfying the following condition

C(S, {ULL{V.D: LéJVeDS, V.~SC U, and the correspondence

Ve U, induces {V }| SE{Ue}E{Ve}E{Ve}
where {U}={V.} denotes that {U} is similar to {V.}.

1) Cf. [12, Theorem 8.2].

2) Cf. [12, Definition]. The cohomological dimension for compact spaces can be
seen in [1] and [6].

3) Cf. [8] and [5, p. 43].

4) Cf. [7, Theorem 3.2].
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All notations which will be used below are the notations used
in [12].

Let F be a closed set of a space X. Let us define D(X, F';G)
as follows: D(X, F;G)<n if and only if D(C;G)<n for every closed
set C of X such as CC X-F.»

Theorem 4. Let X be a space and let F be a closed set of X.
Then we have D(X;G)=max {D(F;G), D(X, F; G)}.®

Proof. Let max{D(F; @), D(X, F;G)}=n and let A be an arbi-
trary closed set of X. It is enough to show that an arbitrary
element ¢ of H™(A;G) (m=n) can be extended to an element of
H™(X;G). Note the following exact sequence by Theorem 2.

co o> HYAYF; G)»H™A; ) X HMF; §)>~H™(A  F;G)—> - - -.

Let ¢,=¢|AF.” Since D(F;G)<n, ¢, can be extended to e,
of H™(F;G). Now by the exactness of the above sequence there is
an ¢, in H™(A~F;G) such as ¢;| A=e. Let a be a locally finite open
covering of A™F such that 27 is an m-cocycle of N(a)® and {z7}®
=e. By Theorem 3 there exists a locally finite collection 8 of open
sets of X satisfying the condition C(F'™A4, a, 5). By the normality

of X there is an open set H such that F~~AcC HC HC B where B
=~{U|Uep}). Note the following exact sequence by Theorem 2,
.o > H™(X; G)—>H™(H; G) X H"X-H; G)—>H™(H— H; G)—> - - - .

Let e,={i(A~F, H)zr}| H—H' Since X—HC X—F and hence
D(X—H;G)=n, e, can be extended to e, of H™(X—H;G). By the
exactness there is an ¢ in H™X;G) such as e¢|H={i(A™F,
H)ztp yraw?}’ Hence ¢;| A={i(A~'F, H)2r}| A=e. This means that
D(X; G)<max {D(F; G), D(X, F; G)} completing the proof.

Using Theorem 1 and the above theorem, we have the follow-
ing corollary.

Corollary. If {X,} is a countable closed covering of X such that
X, X, (k=1,2,--), then D(X; G)=max {I(X,,,, X,; G) where we
put X,=¢.?

Let « be a point finite open covering of X and let « be an
arbitrary point of X. Let us denote by ord (x:a) the integer n such

5) We can see the definition of this form for dim in [10].

6) The theorem of this form for dim was proved in [10, Lemma 4].

7) e| A~F denotes the image of ¢ by the homomorphism H™A; G)—>H™A~F; )
induced by inclusion (ef. [12]).

8) N(a) is the nerve of a.

9) {2} denotes the element of H™(A™F; G) containing Zg"* (cf. [12]).

10) (AN~F, H) is the homomorphism of the cocycles of N(e) into cocycles of N(B)
induced by the correspondence e=p in C(A™F, e, B) (cf. [12]).

11) B|A~YF={U~(A~F)|U€R}. mqp avr denotes the homomorphism of the co-
cycles of N(e) into the cocycles of N(8| A~F') induced by inclusion (ef. [12]).

12) The theorem of this form for dim was proved in [10, Lemma 4].
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that « is contained in at most n» distinct elements of «.

Theorem 5. Let X be a space and let a={U,| 14} be a locally
finite open covering of X such that for each ied D(Uj @=n. Then
we have D(X; G)=n.”®

Proof. For each natural number k& we denote by @, the collec-
tion of all subsets of A4 each of which are distinct k& elements of 4.

If we put T,={x|ord (x:a)=1}, then T, is a closed set of X.
Let &, ={Fi|pe®,} where F,=T, U, such as ¢=2. Then &, is a
discrete collection'® of closed sets of X. Since X is collectionwise
normal, there exists a collection B,={V}|pe®} of open sets of X

such that F1CViC some U, for each ¢e®,, and the collection B,
={V!|pe®,} is discrete. From D(VLG)<®DWU,;G) <n we have
D(UVLEG=n'® Let V= V. Then we have V'DT,.

PEDy pedy
Now let us suppose that for each k=1,2,.-.,1—1 we have con-
structed T,, &, B. and V* such that
(1),: T* is a closed set of X,
(2),: B.={Vilpe®d,}is a collection of open sets of X such that

- &

B, is discrete, and U V*DT,,
k=1

and

(8),: V* is an open set of X such as D(V*:G)<n.

Let T,={x|ord (x:a)<!}. Then T, is closed in X. Because, for
any point # of X—1T, there exists an element ¢ of @,,, and for this
¢ the neighborhood N U, of # is disjoint from T,. So we have T

€9
satisfying (1),.
Next, we shall construct 8, and prove that 8, satisfies (2),. Let

1—
F={F.|pc®} where F,=T, (U U*)—;.Uivh for each ¢e®,. Then &,
2€Q =

is a diserete collection of closed sets of X. To prove this fact we

divide three parts: (i) &, is locally finite, (ii) &, is a disjoint collec-

tion, and (iii) F% is closed for each ¢e¢®,. If we note that F?

Czﬂ U, and {lﬂ U,lpe®} is locally finite in X, then we immediately
€9 €y

have (i). For any distinet two element ¢, ¢’ of @, there is a 4, such

as L,€9, ,¢¢ and from the construction of 7T, we have F?°  F!:.CT,

~(NU)~U,;=¢. Therefore, we have (ii). Let x be an arbitrary
2€9

-1 -1
point of X—F? (pe®,). If = is contained in ;.UVh’ then ;.U V* is a
=1 =1

18) The theorem of this form with respect to dim was proved in [9, Theorem 2]
and we have the theorem with respect to Ind of totally normal space in [11, Theorem 5].

14) Discrete collection is the locally finite collection of mutually disjoint sets.

15) Cf. [12, Theorem 38.1].

16) Cf. [12, Corollary 3.8].
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desirable neighborhood of . Let us suppose that x is not contained

-1
in YV*" 1If z is contained in T, then there exists a ¢’e®, such as
h=1

xe N U,. From x¢F), we get ¢3¢’ and, therefore, there exists

2e¢’

a 1,64 such as A€¢’, 1,¢¢. Since F, U, =9¢, U, is a desirable

-1
neighborhood of x. In [the case x¢ ;.U V* and x¢T, there exist mu-
=1

241

tually distinet elements 2,,---,4,., of /4 such as xehﬂ U... Then
=1

241

hﬂ U,, is a desired neighborhood of x. Here, we get (i), (ii), and (iii)
=1

for &,. Since X is collectionwise normal, there exists a collection
B,={V:|pe®} of open sets of X such that FICV!CV:C some U,
for each pe®, and B, is discrete in X. Let V'=(J Vi. Then by the

ey
assumption T,_lcgv'c we get T,C(Tl—Tl_l)v(:giV’“)C:V’V(glV")
and, hence we obtain (2),.
Finally, we shall show (38),. Since for each ¢c®, ViCU, for
some 1e/4, we have D(V%G)<®D(U,; G)<n. By (2), we have D(V
@=*D(U V};G)=n.

PED;

Since « is a locally finite open covering of X, we have X= GTk
k=1
and, hence we have X=|JV* By Theorem 1 we obtain D(X;QG)
k=1

gD(’lek; G)=<mn. This completes the proof.

Let X be a space. Now we define a local'™ cohomological di-
mension loc D(X;G) as follows: Let loc D(X;G)<n (n=-—1) if and
only if for any point « of X there exists a neighborhood U, of =z
such as D(U,; G)<n.

Theorem 6. Let X be a space. Then we have D(X;G)=loc
D(X; G).®

Proof. We can easily see loc D(X;G)=<D(X;G)."”” Conversely,
if we assume loc D(X; G)<n, for each point z of X there exists a

neighborhood U, of # such that D(U,; G)<n. Since X is paracom-
pact, we obtain an open covering of X satisfying the conditions of
Theorem 5. Hence we have D(X;G)=<loc D(X;G).
Using the above theorem we get the following theorem:
Theorem 7. Let X be a space and let {F,|icd} be a locally
countable closed covering of X such that D(F,; G)<n for each 2Ae.

17) Local dimensions for dim and Ind were defined in [4].
18) We have the theorem of this form with respect to dim [3, [8.8]], and for
paracompact totally normal space we have the theorem with respect to Ind in [3, [3.4]7.
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Then we have D(X; G)<n.
Proof. By the assumption of {F',|1€4} for any point of X there

exists a neighborhood U, of x such that ﬁx,\FA#gz‘: for only count-
able 2=, 4;,---. By Theorem 1 we obtain D(U,; G):D(gl(ﬁx/\Flk);

G)=<n and hence we have loc D(X;G)<n. By theorem 6 we have
D(X; G)=loc D(X; G)=n.
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