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163. Hilbert Transforms in the Stepanoff Space
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Department of Mathematics, Hokkaido University, Sapporo

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1962)

1. Introduction. By the Stepanoff space we mean the set of
measurable function such that for some positive number />0 there
exists a constant K and we have

(1.1) sup 1 f+_<<-, [f(t)[dt<=g (l_<_p__< ).

We denote these classes by S". This norm is firstly introduced by
W. Stepanoff [4 for the study of almost periodic functions.

The purpose of this paper is to find under what condition does
the Hilbert transform of a function of the class S belong to the same
class again ?

The Hilbert transform is defined by the following formula

(1.2)

We understand this singular integral as the Cauchy sense. It does
not always define and we assume its existence for almost all x.

One of the important property of tIilbert transform is that it
commutes with translations and dilatations. These are

(1.3) F(t)-- f(t+a) implies (, )(t)--()(t+a).
(1.4) F(t)--f(,t) implies (F)(t)--(f)(,t).
These propertie are pointed out explicitely by M. Cotlar [1. The
author have learned this through mimeorgraphed papers presented
by Dr. Y.M. Chen of the Hong-Kong University. The author thanks
him for his kind considerations.

2. Equivalence between two norms. We consider the second

norm. For all T>__I and all real number ,(1/2T). If(t+)ldt is
--:7’

uniformly bounded. ’l’ha is, there exists eonstant K sueh as
1 f’lf(t+x)l’dt<_K’ (--oo<x<oo T>I).
22’

And thus we get

(.1) 11 If(+t) ldt-<K’ unif. x.
2T

--2"

We denote this uniform norm as (2.1).
Lemm 1. The two norms (1.1) and (2.1) are equivalent.

If (1.1) consists for some >0 then it does also for any other
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with other constant K". It is enough to prove the lemma for 1-1.
It is immediate that (2.1) contains (1.1). We shall show that (1.1)
leads (2.1). For any pair of T_>_I and --oo<<oo, we get

1 if(x+t)lpdt< 1 [2"]+1, f(t+ x) dt
2T 2T

2" (--1)_
sup f(t)[dt

2T =---<<
N su ,f,t,.gt ([T+I)

N
Thus we get

lirnl---frlf(x+t)[dt<_K unif. x.
2" 2T

--2"

3. One sided Wiener’s formula. Let f(t) be real valued
measurable function defined on (-- oo, oo). Furthermore through this
section let us suppose that f(t) is non-negative. This is essential
for our one-sided Tauberian theorem.

We consider the two formulas"

lira 1 fr(3.1)
-.oo

f(x 4- t)dt A unif. x

and

(3.2) lim--- (x+ t) sin t dt A’ unif. x.
o t

We understand these as we do in preceeding section. We concern
(3.1) and (3.2) with TI and 0el respectively.

Then we have as an extenstion of the famous Winer formula"

Theorem 1. (3.1) and (3.2) are equivalent each other.
The proof can be done by running on the line of N. Wiener 5.

For the sake of completeness we repeat his arguments here. Because
uniformity is essential for later arguments.

If we assume that (3.2) is satisfied. Then by the positiveness of
f(t), we get for any O<el

2e r/,

] f(x+ t)dt 4A’/= unif. x.

Thus we get (3.1).
Next we assume that (3.1) is satisfied. Then we get

+ j f(t)gt 1
-<< 1+t -<< 1+

N su J f(t)dt.

And so we get
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f(x+ t)dt <_ dt <_ 2K/T--->O, unif. x
T l+t

as T-+ oo and
2 ff(+)si.,d, < 2 frcs ------ --T- f(x+ t)dt <= 4K-->O, unif. x

as ->0, respectively. Thus without loss of generality we assume
that f(x+t)--O for 0=<t=<l. Then we have from (3.1) for any pair
of number C and D such as 0__< C=< D__< oo

(SA) f(+ t) 8_4

t
dt< unif. x.

(2
--max (C, 1)

Because by integration by parts we get

D
f(+)--

o,

C

A Af2dt<= C--’ + d

3A unif. x
C’

where we put C’ instead of max (C, 1).
From (3.4) we lead that the integral appeared in (3.2)exists for

every x. If we deride into two parts
2 [f(+,) si__n __,

d,
Sd $2

+ f(x+ t) sin" st
t dt=I+I say.

Then we get

immediately and we also get from (3.4)

L. <= 2-ff(xt+ t) dt < unif. x.

Thus the proof of Theorem I is completed.
Furthermore if we need to prove that it is bounded from above

by the same constant in (3.1) and (3.2). We can attain by the same
but detailed arguments as that of N. Wiener. But we need the G. H.
Hardy and J. E. Littlewood Tauberian theorem [2, pp. 180-181.

I {f(x+t)+f(x--t)}. Then we getIf we apply Theorem 1 to --Corollary. Let f(t) be non-negative. Then the following for-
mulas
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are equivalent.

4. Generalized harmonic analysis in the Stepanoff Space. By
W we mean the class of measurable function defined on the real
line such as

(4.1)
lq-t

From (3.3) it is clear that WSL For this class, the generalized
Fourier transform, which is introduced by N. Wiener [6, is well
defined"

(4.2) s(u, x) jf(t+ x) e
--it--

1 dt
--1

1 -+ f(t+x) dt.+
For any positive s>O we have

1 f _utdt"(4.3) s(u+, x) s(u-- , x) 1.i.m. f(t+ x) 2 sin st e

Applying the Plancherel theorem we have

(4.4) 1 __.f s(u+, x)-s(u--, x) du ,1 --__.f= f(t+ sinat t dt.

Then if we apply Corollary I to (4.4) we get immediately

Theorem 2.
are equivalent.

(4.5)

and

(4.6)

Let f belong to W. Then the following formulas

unif. x

lim f(x+ t) dt<
--T

unif. x.

5. Hilbert transforms in the Stepanoff Space. For f from the
class W, the modified Hilbert transform is well defined. That is

(5.1) .(t) t+ i fl.f_(s)_ 1 ds.
_

s+i t--s

Formally we get

Lf= &+K f=t--s , s+i
where

(5.3) A-- 1 ds.
s+i
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Therefore for the existence of Hilbert transform f(t), it is equivalent
that the Ar is finitely determined. The modified one does not keep
the property to commutes with translations. But if we assume that
the ordinary Hilbert transform exists for a.e. x, then we get for F(s)
=f(s+a)

(5.4) (F’,)(t)_.t+iff@+a) ds
zr s+i t--s

z --s = s+i

=(F)()+Ar(a),
where

(5.5) A()- !f=f@+)-- ds.

From our preceeding papar [3, Ths. 45, 59 the (F)(t) also
belongs to the class W and its generalized Fourier transform is well
defined. We denote this by (u, a). Then we get

Theorem 3. Let f(t) belong to the class S. Let us assume
that its ordinary Hilbert transform exists for a.e.t. Then we have
for any positive number
(i) if
(5.6) g(u+e, x)--g(u--e, x)-(--i sign u)[s(u+s, x)--s(u--e, x)}
and
(ii) if luige
(5.7) (u+e, x)-(u-e, x)-i{s(u+, x)-s(u-, x)}

(),
where

(g.8) f(,)-l.i.m. 1 f(+t) e-Ut_l-_ +i
d

(5.9) r(u,x)--l.i.m 1 e-ut dt.

Combining with Theorems 2 and 3 we attain the following result.

Theorem 4. Under the same assumptions as Theorem 3, the

necessary and sufficient for f(t) to belong to the same class S is

(g.11) lim I(

We get

t+i -it
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l+t

(f)< sup [f(x+t)[ :’u sup 0(e2)dt.O du < f(t)---<< 1+ t =-<<
Thus we get

uni.
2e

By the similar arguments we obtain
Theorem 5. Let f(t) be S almost periodic and have no spectre

at u--0. Let us assume that the Hilbert transform f(t) exists a.e.

t. Then the necessary and sufficient condition for f(t) to be also S
almost periodic and to have no spectre at u--0, is

(5.12) :’-Is I’i.lxL’l unif.

Let the associated Fourier series of f(t) be
(5.13) f(t)’a.e.
Then we get

(5.14) f(t)’(--i sign i.) a.e.
The prime mean that the term n=0 is excluded from the summa-
tion.

References

[lJ M. Cotler: On the theory of Hilbert transforms, The Dissertation of Doctor, Univ.
of Chicago (1953).

[2] G. H. Hardy and J. E. Littlewood: Tauberian theorems concerning power series
and Dirich]et series whose coefficients are positive, P.L.M.S. 2(13), 174-191 (1914).

[3J S. Koizumi: On the Hilbert transform I. Journ. Fac. Sci. Hokkaido Univ., vol.
XIV, 153-224 (1959).

[4] W. Stepanoff: Uber einigen Verallgemeinerungen der fastperiodischen Funktionen,
Math. Ann., 9, 473-498 (1926).

[5J N. Wiener: On a theorem of Bochner and Hardy, J.L.M.S. 2, 118-123 (1927).
[6] : Generalized harmonic analysis, Acta Math., 55, 117-258 (1930)


