162. An Extension of the Interpolation Theorem of Marcinkiewicz

By Satoru Igari
Mathematical Institute, Tôhoku University
(Comm. by K. Kunugi, M.J.A., Dec. 12, 1962)

§1. Introduction. In this paper we show that the Marcinkiewicz interpolation theorem of operators (e.g. see Zygmund [5]) holds good for Hardy class H_{p} or class \mathfrak{g}_{p} introduced by Stein-Weiss [4].
H_{p}-class $(p>0)$ is the space of all functions analytic in the unit circle such that

$$
\|\varphi\|_{p}=\lim _{r \rightarrow 1}\left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\varphi\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}
$$

is finite. \mathfrak{S}_{p}-class is the space of the vectors $F(X, y)=(u(X, y)$, $\left.v_{1}(X, y), \cdots, v_{n}(X, y)\right)$ whose components are all harmonic in half-space $E_{n+1}^{+}=\left\{(X, y) ; X \in E_{n}, y>0\right\}^{1)}$ and satisfy the generalized CauchyRiemann equations,

$$
\begin{gathered}
\frac{\partial u}{\partial y}+\sum_{i=1}^{n} \frac{\partial v_{i}}{\partial x_{i}}=0, \quad \frac{\partial u}{\partial x_{i}}=\frac{\partial v_{i}}{\partial y}, \quad i=1,2, \cdots, n \\
\frac{\partial v_{i}}{\partial x_{j}}=\frac{\partial v_{j}}{\partial x_{i}}, \quad i \neq j, \quad 1 \leqq i, j \leqq n
\end{gathered}
$$

and whose norm is defined by

$$
\|F\|_{p}=\lim _{y \rightarrow 0}\left\{\int_{E n}|F(X, y)|^{p} d x\right\}^{1 / p} .
$$

Let $f \in L_{p}(-\pi, \pi)(p \geqq 1)$ be periodic with period 2π, then its conjugate function is defined by

$$
\tilde{f}(x)=\frac{1}{\pi} P \cdot V \cdot \int_{-\pi}^{\pi} \frac{f(y)}{2 \tan (x-y) / 2} d y .
$$

One of its n-dimensional analogue is M. Riesz transform;

$$
(R f)(X)=\left(\left(R_{1} f\right)(X), \cdots,\left(R_{n} f\right)(X)\right)=\frac{1}{c_{n}} P \cdot V \cdot \int \frac{X-Y}{|X-Y|^{n+1}} f(Y) d Y
$$

where $c_{n}=\pi^{(n+1) / 2} / \Gamma((n+1) / 2)$, and $f \in L_{p}\left(E_{n}\right)$.
We remark that if we put $K f=(f+i \widetilde{f}) / 2$ for $f \in L_{p}(-\pi, \pi)(p>1)$, then $K f \in H_{p}$ and in particular if $f \in H_{p}(p \geqq 1)$, then $K f=f$. Similarly if we put $\mathscr{R} f=(f, R f)=\left(f, R_{1} f, \cdots, R_{n} f\right)$ for $f \in L_{p}\left(E_{n}\right)(p>1)$, then f is a boundary function in $\mathfrak{פ}_{p}$ and conversely if $F=\left(f, f_{1}, \cdots, f_{n}\right)$ is a boundary function in \mathfrak{S}_{p}, then $\mathscr{\Re} f=F$.
§2. Let T be a quasi-linear operator from $\mathfrak{S}_{p}\left(\right.$ or $\left.H_{p}\right)$ to ν -

[^0]measurable functions, that is, if $T F_{1}$ and $T F_{2}$ are defined, then $T\left(F_{1}+F_{2}\right)$ is definable and satisfies $\left|T\left(F_{1}+F_{2}\right)\right| \leqq \kappa\left(\left|T F_{1}\right|+\left|T F_{2}\right|\right)$, where κ is a constant independent on F_{1} and F_{2}.

Theorem. Suppose that the quasi-linear operater T satisfies $\nu(\{s ;|(T F)(s)|>t\})^{1 / q_{i}} \leqq\left(M_{i} / t\right)\|F\|_{p_{i}}$, for all $F \in \mathfrak{S}_{p_{i}}, \quad(i=0,1)$ where $1 \leqq p_{i} \leqq q_{i}<\infty(i=0,1), p_{0} \neq p_{1}$ and $q_{0} \neq q_{1}$. Lut us put

$$
1 / p=(1-\theta) / p_{0}+\theta / p_{1} \text { and } 1 / q=(1-\theta) / q_{0}+\theta / q_{1}, \quad(0<\theta<1) .
$$

Then

$$
\|T F\|_{q} \leqq \kappa(\kappa+1) A M_{0}^{1-\theta} M_{1}^{\theta}\|F\|_{p}, \text { for all } F \in \mathfrak{S}_{p},
$$

where A depends only on $p_{0}, p_{1}, q_{0}, q_{1}$ and θ, and

$$
A^{q}=O\left(\left(q_{1}-q\right)^{-1}+\left(q-q_{0}\right)^{-1}(p-1)^{-1}\right)
$$

The above statements are valid for H_{p}-space.
Lemma 1. Let $f \in L_{p}\left(E_{n}\right)(1<p<\infty)$, then for each $a>0$ and $r, 1 \leqq r \leqq p$, the following decomposition of f is possible;
(i) $f=u+u^{\prime}, u^{\prime}=v+w, w=\sum_{k=1}^{\infty} w_{k}$.
(ii) $u=f$, if $|f|<a$ and $u=0$, elsewhere.
(iii) $|v| \leqq 2^{n} a$, for a.e. X in E_{n}.
(iv) $\int_{E_{n}}|v(X)|^{s} d X \leqq \int_{E_{n}}\left|u^{\prime}(X)\right|^{s} d X$ for each $s, 1 \leqq s \leqq p$.
(v) $\sum_{k=1}^{\infty} \int_{\mathbb{E}_{n}}\left|w_{k}(X)\right|^{s} d X \leqq 2^{s+1} \int_{\mathbb{E}_{n}}\left|u^{\prime}(X)\right|^{s} d X$ for each $s, 1 \leqq s \leqq p$.
(vi) There exists a sequence $\left\{I_{k}\right\}$ of disjoint cubes such that supports of w_{k} are contained in I_{k} and

$$
\sum_{k=1}^{\infty}\left|I_{k}\right| \leqq \frac{1}{a^{r}} \int_{\mathbb{E}_{n}}\left|u^{r}(X)\right|^{r} d X
$$

(vii) $\int_{E_{n}} w_{k}(X) d X=0, k=1,2, \cdots$.

In the case of $L_{p}(-\pi, \pi)$, we decompose $f(x)$ as above for a_{0} $=\sup \left\{a ; \pi / 2 \leqq a^{-r} \int\left|u^{\prime}(x)\right|^{r} d x\right\}$ and set $f=u+u^{\prime}$ for $0<a<a_{0}$.

In any case, we define u by (ii) and decompose $u^{\prime}=f-u$ along the line in L. Hörmander [2].

Lemma 2. For $\left\{w_{k}\right\}$ defined in Lemma 1, we have,

$$
\sum_{k=1}^{\infty} \int_{C B}\left|\mathscr{R} w_{k}\right| d X \leqq C \sum_{k=1}^{\infty} \int_{E_{n}}\left|w_{k}\right| d X,
$$

where E is the set obtained by expanding each I_{k} concentrically three times and $C E$ is the complement of E and C is some constant.

Lemma 2 holds for $L_{p}(-\pi, \pi)$ case replacing $\Re w_{k}$ by $K w_{k}$.
Proof of Theorem. First we consider the \mathscr{S}_{p}-case. If $F=\left(f, f_{1}\right.$, $\left.\cdots, f_{n}\right) \in \mathfrak{S}_{p}$, then $F=\Re f$, therefore by the well-known arguments

$$
\left\|T F^{q}\right\|_{q}^{q} \leqq q \int_{0}^{\infty} y^{q-1} \nu(|T F|>y) d y
$$

$$
\begin{aligned}
& \leqq q(3 \kappa(\kappa+1))^{q}\left\{\int_{0}^{\infty} y^{q-1} \nu(|T \Re u|>y) d y+\int_{0}^{\infty} y^{q-1} \nu(|T \Re v|>y) d y\right. \\
& \left.+\int_{0}^{\infty} y^{q-1} \nu(|T \Re w|>y) d y\right\}=q(3 \kappa(\kappa+1))^{q}\left(I_{1}+I_{2}+I_{3}\right), \text { say }
\end{aligned}
$$

where u, v, and w are the functions in Lemma 1 with $\alpha=(y / b)^{2}$, and $\nu(|T F|>y)=\nu(\{X ;|(T F)(X)|>y\})$. We consider the case $1=p_{0}<p_{1}$ and $q_{0}<q_{1}$ only, the other cases are similar. I_{1} may be estimated by the usual way but we must use the Calderón-Zygmund inequality $\|\Re F\|_{p} \leqq A_{p}\|f\|_{p}(p>1)$, where $A_{p}=O(p-1)^{-1}$. By (iii) in Lemma 1, $I_{2} \leqq M_{1}^{q_{1}} A_{p_{1}}^{q_{1}} \int_{0}^{\infty} y^{q-q_{1}-1}\left\{\int|v(X)|^{p_{1}} d X\right\}^{q_{1} / p_{1}} d y$

$$
\leqq M_{1}^{q_{1}} A_{p_{1}}^{q_{1}} 2^{n\left(p_{1}-1\right) q_{1} / p_{1}} B^{-\lambda\left(p_{1}-1\right) q_{1} / p_{1}} \int_{0}^{\infty} y^{q-q_{1}-\left[\left(p_{1}-1\right) q_{1} \lambda / p_{1}\right]}\left\{\int|v(X)| d X\right\}^{q_{1} / p_{1}} d y
$$

Hence we get
$I_{1}+I_{2} \leqq\left(\frac{M_{1}^{q_{1}} A_{p_{1}}^{q_{1}}}{q_{1}-q}+\frac{M_{1}^{q_{1}} A_{p_{1}}^{q_{1}} n^{n\left(p_{1}-1\right) q_{1} / p_{1}}}{q-q_{1}+\left[\left(p_{1}-p\right) q_{1} \lambda / p_{1}\right]}\right)\left(\int|f|^{\left[\left(q-q_{1}\right) p_{1} / \lambda q_{1}\right]+p_{1}} d X\right)^{q_{1} / p_{1}}$.
$I_{3} \leqq M_{0}^{q_{0}} \int_{0}^{\infty} y^{q-q_{0}-1}\|\Omega w\|_{p_{0}}^{q_{0}} d y$

$$
\leqq M_{0}^{q_{0}} 2^{q_{0}}\left\{\int_{0}^{\infty} y^{q-q_{0}-1}\left(\int_{E}|\Re w| d X\right)^{q_{0}} d y+\int_{0}^{\infty} y^{q-q_{0}-1}\left(\int_{C E}|\Re i w| d X\right)^{q_{0}} d y\right\}
$$

The second term may be estimated by the well-known method applying Lemma 2.

The first term does not exceed

$$
\int_{0}^{\infty} y^{q-q_{0}-1}|E|^{q_{0} / r^{r}}\left(\int|\Re w|^{r} d X\right)^{1 / r} d y
$$

where $r=(p+1) / 2$ and $1 / r+1 / r^{\prime}=1$. Using (vi) in Lemma 1 for $|E|$ and Calderón-Zygmund inequality for inner integral, above integral is not greater than

$$
\begin{aligned}
& A_{r}^{q_{0}} 2^{n q_{0}(r+1) / r} B^{\lambda q_{0} / r^{\prime}} \int_{0}^{\infty} y^{q-q_{0}-1-\left[q_{0} \lambda r / r^{\prime}\right]}\left(\int\left|u^{\prime}\right|^{r} d X\right)^{q_{0}} d y \\
& \leqq \frac{A_{r}^{q_{0}} 2^{n q_{0}(r+1) / r} B^{\lambda q_{0} r / r^{\prime}}}{q-q_{0}-\lambda q_{0}(r-1)}\left\{\int|f|^{\left[\left(q-q_{0}\right) / q_{0} \lambda\right]+1} d X\right\}^{q_{0}}
\end{aligned}
$$

Setting $\lambda=p_{0}\left(q-q_{0}\right) / q_{0}\left(p-p_{0}\right)$ and $B=M_{0}^{s} M_{1}^{\tau}\|f\|_{p}^{u}, \sigma, \tau$ and u being some constants, we get Theorem.

In the H_{p}-space, we must devide the integral into ($0, y_{0}$) and $\left(y_{0}, \infty\right)$, where $\left(y_{0} / B\right)^{\lambda}=a_{0}$; we don't go into the detailed arguments.
§3. Littlewood-Paley function g^{*} is defined by

$$
g^{*}(\theta, \varphi)=\left\{\sum_{n=1}^{\infty} \frac{\left|S_{n}(\theta)-\sigma_{n}(\theta)\right|^{2}}{n}\right\}^{1 / 2},
$$

where $S_{n}(\theta)$ and $\sigma_{n}(\theta)$ are n-th partial sum and $(C, 1)$ mean of the Fourier series of $\varphi \in H_{1}$. This operator is an example which is weak type (1,1) for the functions in H_{1}-space but not in $L_{1}(-\pi, \pi)$ (see
E. M. Stein [3]), and which is strong type (2, 2). Another example is the operator $(T \varphi)(\theta)=S_{n(\theta)}(\theta)$, where $n(\theta)$ is any integral valued measurable function. This operator is strong type (1,1) for $\varphi \in H_{1}$ when $d \nu(\theta)=d \theta / \log (|n(\theta)|+2)$ with the notation in §2 and strong type $(2,2)$ for $f \in L_{2}$. Therefore our theorem gives real proof of the Littlewood-Paley inequality $\left\|\sup _{n \geqq 0}\left|S_{n}(\theta) /(\log (n+2))^{1 / p}\right|\right\|_{p} \leqq A_{p}\|\varphi\|_{p}$ ($1<p<2$) (cf. H. Helson and D. Lowdenslagar [1]).

References

[1] H. Helson and D. Lowdenslager: Prediction theory and Fourier series in several variables, Acta Math., 99, 165-202 (1958).
[2] L. Hörmander: Estimates for translation invariant operators in L^{p} spaces, ibid., 104, 93-139 (1960).
[3] E. M. Stein: On limit of operators, Ann. Math., 74, 140-170 (1961).
[4] E. M. Stein and G. Weiss: On the theory of harmonic functions of several variables. I. The theory of H^{p}-spaces, Acta Math., 103, 25-62 (1960).
[5] A. Zygmund: Trigonometric Series, 2nd edition, Cambridge (1959).

[^0]: 1) We denote the Euclidean space of n-dimension by E_{n}, its points (x_{1}, \cdots, x_{n}), $\left(y_{1}, \cdots, y_{n}\right)$, etc. by X, Y, etc. and the element of volume $d x_{1} d x_{2} \cdots d x_{n}$ by $d X$.
