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162. An Extension of the Interpolation Theorem
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Mathematical Institute, TShoku University

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1962)

1. Introduction. In this paper we show that the Mareinkiewiez
interpolation theorem of operators (e.g. see Zygmund [5) holds good
for Hardy class H or class 2) introduced by Stein-Weiss [4.

H-class (p>0) is the space of all functions analytic in the unit
circle such that

is finite. 2)-elass is the space of the vectors F(X, y)-(u(X, y),
v(X, y),..., v(X, y)) whose components are all harmonic in half-space
E,++-[(X,y);XeE,,y>O} and satisfy the generalized Cauchy-
Riemann equations,

u +y *=--x --0,

v, v
3x

3u

3x 3y
i=1, 2,...,n,

i#j, l<i,j_<n,

and whose norm is defined by

IlFll,=lim IF(X, y) dx
y--,O

Let fL(--z, )(p_>_l) be periodic with period 2, then its con-
jugate function is defined by

f’(x)-- 1__ p. ..f. f(y) dy.
z tan (c--y)/2

One of its n-dimensional analogue is M. Riesz transform;

(Rf)(X)--((Rxf)(X),...,(R,f)(X))-- 1 P.r..j" X--Y f(Y)dY,

where c--=(+)//F((n+ 1)/2), and fe L(E,).
We remark that if we put Kf--(f+if)/2 for fL(--, )(p>l),

then Kf H, and in particular if f H(p >_ 1), then Kf f Similarly
if we put f-(f, Rf)--(f, Rff,..., Rf) for f L(E,)(p>I), then
f is a boundary function in (C) and conversely if F=(f,f,...,f)is
a boundary function in 2), then f--F.

2. Let T be a quasi-linear operator from (C)(or H) to v-

1) We denote the Euclidean space of n-dimension by En, its points (xl,"’,Xn),
(Y,’", Yn), etc. by X, Y, etc. and the element of volume dxldx... "dxn by dX.
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measurable functions, that is, if TF and TF2 are defined, then
T(F1 -F2) is definable and satisfies T(F1 +F2) =< (I TF11 + TF. ),
where is a constant independent on F1 and F.

Theorem. Suppose that the quasi-linear operater T satisfies
,({s; I(TF)(s)l >t})/q<=(M/t)llF[li, for all Fe(C),, (i--O, 1)

where l<=pq oo(i--O, 1), Po-P and qo-ql. Lut us put
1/p-(1--O)/po-O/p and 1/q=(1--O)/qo-O/q, (0<0<1).

IITFI}q<=(+ I)AM-MIIF[[, for all
where A depends only on Po, Pl, qo, ql and O, and

A =O((q _q)-I

_
(q--qo)-I(P-- 1)-1).

The above statements are valid for Hp-space.
Lemma 1. Let fLp(En)(lpoo), then for each aO and

r, lgrgp, the following decomposition of f is possible;
) f=u+u’,u’=v+w,

(ii) u=f, V f <a and u=0, elsewhere.
(iii) ]v 2a, for a.e. X in E.

fv N w(X)dXN2"* u’(X)l"dX for each s, lNsNp.

(vi) There exists a sequence {I} of disjoint cubes such that
supports of w are contained in I and

=1 a

(vii) fw(X)gX=O, -l, 2,...

I the ease of L(--,), e geeomoe f()

=sup{a;/2ga-f [u’(x)[dx} and set f=u+u’ for O<a<ao.
In any case, we define u by (ii) and decompose u’=f--u along

the line in L. HSrmander 2.
Lemma 2. For {w} defined in Lemma 1, we have,

IwldXCN IwldX,
1

where E is the set obtained by expanding each I concentrically
three times and CE is the complement of E and C is some constant.

Lemma 2 holds for L(--u, ) case replacing w by Kwh.
Proof of Theorem. First we consider the -case.

",f)0, then F=f, therefore by the well-known arguments

]ITFllq Yq-’(I TFI >y)dy

Then
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+ -(I TI >)gg --q(8(+l))q(I+I+I), say,

where , v, and are the functions in Lemma 1 with a-(/b), and
(I TNI >)--({X;(TN)(X) >}). We consider the ease
and q<q only, the other eases are similar. I may be estimated
he usual way but we mus use the Calderdn-Zygmund inequality

Iillllfll,(>l), where A,-O(--I) -. By (iii) in Lemma 1,

Hence we get

q_q q--q+ (p--p)q/pJ

The second term may be estimated by the well-known method apply-
ing Lemma 2.

The first term does not exceed

where t--(p+1) and 1/r+l/r’-l. Using (vi) in Lemma 1 for
and Calder6n-Zygmund inequality for inner integral, above integral
is not greater than

AY2nq’r +l)/r Uaq,r/r yq-q’--:q’/’ u’] dX dy

q--qo--aqo(r--1)
Setting a-Po(q--qo)/qo(P--Po) and B-MM[[[f[[$, a, r and u being some
constants, we get Theorem.

In the H-space, we must devide the integral into (0, Yo)and
(Y0, ), where (yo/B)a--ao; we don’t go into the detailed arguments.

3. Littlewood-Paley function g* is defined by

g.(, )_ {.=, S,(0)-a,(O)} /’,
where S,(O) and a(O) are n-th partial sum and (C, 1) mean of the
Fourier series of sH,. This operator is an example which is weak
type (1, 1) for the functions in H,-space but not in L,(--z, ) (see
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E.M. Stein [3), and which is strong type (2, 2). Another example
is the operator (T)(0)=S()(#), where n(0) is any integral valued
measurable function. This operator is strong type (1, 1) for eH
when d,(O)=d#/log(In(#)l+2) with the notation in 2 and strong
type (2, 2) for f eL.. Therefore our theorem gives real proof of the
Littlewood-Paley inequality Ilsup,z01Sn(#)/(log (n+2))1/1 t[p_-<Allllp
(lp2) (cf. H. Helson and D. Lowdenslagar [1).
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