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Faculty of Education, Kumamoto University

(Comm. by Kinjir5 KUNUG, M.J.A., Feb. 12, 1963)

On the assumption that 5 and Y2 denote respectively a given
complex number and an appropriately large circle with center at the
origin and that the ordinary part R(2) of the function S(2) defined
in the statement of Theorem 1 [1 is a transcendental integral func-
tion, in this paper we shall discuss the relation between the distri-
bution of 5-points of S(2) and that of -points of R(2)in the exterior
of the same circle /2 and shall then show that, if each of S(2) and
R(2) has its finite exceptional value for the exterior of 9, the two
exceptional values are identical under some conditions.

Theorem 16. Let S(2),R(,), and {2} be the same notations as
those in Theorem 1; let a be an appropriately large number such
that sup]2, a; let {z} be an infinite sequence of all 5-points

of R() in the exterior of the circle ]2]--a such that
R(z)-- } (n=l 2, a,...)

and z (n), each 5-point being counted with the proper
multiplicity; let

where p is an arbitrarily prescribed number subjee go he condition
supra,] <p< ; le be he greaes value o he positive integers

in ehe first non-zero eoeeienes Rc")(z)/! o the Taylor expan-
sions o R(a) at z=,u--l, 2,8,...; lee min{]Rc")(z)]/!} be posi-

tive; let Msup max{] R’(z)/!} (u, --1, 2, 8,...) be finite; and

le be an arbierarily given number such hae 0 < r<
Then, in he inerior o he eirele [a-z[-r associated wih any
saisCying

8(2) has -oings whose number (counted aeeording o multiplicity)
equals tha of -oins of R(2) in the inerior of he same eirele as

Proof. I mus firsg be noted ha he ease where R(2)has such
-oins {} as was described in the stameng of the resen theorem
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can occur in accordance with Picard’s theorem when it is a trans-
cendental integral function.

Now, by hypotheses,

R(z--re)-- I R)(z) (reO)

( Mr)=>r m l:Z 

( Mr)>=r. m- >o,

where , is the same notation as that defined in the statement of
the present theorem; and in addition, denoting by Z() the sum of
the two principal parts of S(2) and applying the expansions of R(2)
and S() E2], we can find at once that for every z satisfying [z[

where

a-- S(pe) cos kt dt
7

b-- --1 S(peu) sin kt dt
7

Since, on the other hand, there exist large positive integers n
such that

C <r,(m_ Mr ), i.e.,[ ( CMr)A_llp+r<[z,l,0<
z r-- p 1-- r r" m-- l--r

by denoting by G the least value of n satisfying this last inequality we
obtain the inequalities R(z/+re)--l>lZ(z/+re) I, p=0, 1, 2,.-.,
for every 0 in the closed interval [0, 2=. If, for simplicity, we denote
by F the circle 12--z/ I-- r associated with the point z/ for each
value of p-0,1,2,. ., then the just established result shows that

--1 > Z()l on F, p=0, 1, 2,.-.. In addition to it, R()-- and ;(2)
are both regular inside and on any F by the condition
In consequence, it is found with the help of Rouch’s theorem that the
function S(2)--={R(2)--}+Z(2) has zeros (with multiplicities pro-
perly counted) inside any F, and that the number of those zeros is
equal to that of zeros (with multiplicities properly counted) of R(2)-- inside the same F. Evidently this implies that the result stated
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in the present theorem holds true.
Theorem 17. Let S(), R(), {}, a, p, C,/2, m, M, and r be the

same notations as those in Theorem 16 but let {z} in it be an infinite
sequence of all -points of S() in the exterior of the circle I1--a
such that

S()
/ (n=l 2,3,...)

and ]z,[-->oo (n-->oo), each -point being counted with the proper

multiplicity; and let s be a positive number less than f m--1---e
Then, in the interior of the circle [2--z[--r associated with any z
satisfying the conditions R(z)--[ e and

v m-- Mr
1--r

R(2) has -points whose number (counted according to multiplicity)
equals that of -points of S() in the interior of the same circle as it.

Proof. As will be seen immediately from the expansion of
[2, IZ(2)l-->0 (121-->oo) and so IR(z)--l-->O (n-->oo) by virtue of the
hypothesis S(z) , n 1, 2, 3. .. Since, moreover, by hypotheses,

R(zn+ re*) >= r"( m

for all z, with [R(z,)--[ <, and since, as demonstrated in the
course of the proof of Theorem 16,

Z(zn+ re*) <__ Cp < oo

for any z, with ]z >r+ p, it can be verified without difficulty from the
relation S(z,+re*O)- [R(z,+re*a)--{}+ Z(z,+reio) that S(z,+
> ]Z(z,+re*a)l for every 0el0, 2=_ and every z, satisfying the condi-
tions R(z,)-- {I <e and

2Cp < r" ( m Mr )--z, i.e.,O<
iz[_r_p 1--r

Mr,--
1--r

For any z, satisfying these two conditions, we have therefore
the inequality ]S(1)-{I > IX(1)] holding on the circle I--z,I =r, and
moreover S(I)-{ and ;() are both regular inside and on this circle
by the condition [z, ]>r+p. On the other hand, as can be seen from
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the familiar method of the proof of the Rouch theorem quoted be-
fore, it is rewritten as follows: if f() and g() are both regular on
a simply connected domain D, if F is the curve defined by the
equation 2=$(s), (0_<_s_l,(0)=0,(1)=l), where (s) is a continuous
function of s, and if for any point on F the function f(2)--(s)g(2)
never vanishes on a rectifiable closed Jordan curve K contained in
D, then, in the interior of K, the number (counted according to
multiplicity) of zeros of f(2)--g(2) coincides with that of zeros of f(2).
In consequence, by applying this rewritten Rouch theorem to the
above established results, we can conclude that the number (counted
according to multiplicity) of -points of the function R(,)=S(2)--Z(,)
inside any circle [2--z[-r where z. satisfies the above-mentioned
conditions is equal to that of -points of S(2) inside the same circle
as it.

The present theorem has thus been proved.
Theorem 18. Let S(2), R(2), {2}, and a have the same meanings

as in Theorems 16 and 17 respectively. If S(2) has 5(#0o) as its
exceptional value for the exterior of the circle ]2[--a, that is, if
the equation S(2)-5 has not infinitely many solutions in the domain
{2: [2[ >a}, then the same is also valid of the equation R(2)=5, and
conversely.

Proof. First we consider the case where S() has 5 as its finite
exceptional value for the above-mentioned domain . If, contrary
to what we wish to prove, is not the exceptional value of R(2)
for , there would exist -points {z} of R(2), which are so arranged
as to satisfy the conditions stated in Theorem 16. Contrary to the
hypothesis on S(2), this result would lead us to the conclusion that
S(2) has also an infinite sequence of 5-points in , according to
Theorem 16. Consequently 5 must be the exceptional value of
R(2).

Next we consider the case where 5 is the finite exceptional
value of R(2). In this case, by making use of a method analogous
to that applied in the preceding paragraph and of Theorem 17 it can
be verified similarly that S(2) has as its exceptional value for the
domain .

The proof of the theorem is thus complete.
Remark. We here remark on R()(2), k=0, 1, 2,..., that each of

these functions is expressible by a curvilinear integral associated
with S(2) itself, as shown in Theorem 1.
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Page 707, line 6 from bottom:
11

Ms(o, O)=K" read "Ms(o, O):K"For
(1_) (1_)0


