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36. On the Absolute Norlund Summability Factors
of a Fourier Series

By H. P. DIKSHIT
(Comm. by Kinjird KUNUGI, M.J.A., March 12, 1963)

1.1. Definitions. Let > u, be a given infinite series with the
sequence of partial sums {s,}. Let {p,} be a sequence of constants,
real or complex, and let us write

P,=p,+p+ -+ +p,; P.,=p_,=0.
The sequence-to-sequence transformation:
1 1 &
(1.1.1.) t,= P %p”“”s”— 2 ,ZOP"‘"”"’ (P,x0),
defines the sequence {¢,} of Norlund means of the sequence {s,}, gener-
ated by the sequence of coefficients {p,}. The series > u, is said to
be summable (&, p,) to the sum s if lim¢, exists and is equal to s,

n—oco

and is said to be absolutely summable (N,p,), or |N,p,|, if the
sequence {t,} is of bounded variation,” that is, the series >|¢,—¢,_,|
is convergent. In the special case in which

(1.1.2) p,=1/(n+1)

the Norlund mean reduces to the Harmonic mean.

Thus summability |N, p,|, where p, is defined by (1.1.2) is the
same as the absolute Harmonic summability.

1.2. Let f(t) be a periodic function, with period 2z, and inte-
grable in the sense of Lebesgue over (—=, z). Then the Fourier series
of f(t) is
(1.2.1) S (a, cos nt+b, sin nt)=>] A,(t).

We write

¢(t)=%{f(w+t)+f(w—t)},

r=[1/t], i.e., the greatest integer contained in 1/t.
K=an absolute constant, not necessarily the same at
each occurrence.
2.1. We establish the following theorem.

Theorem. If ¢(t)e BV (0,z), and {4}, where A,= ':: , 18 monotonic

increasing then inAn(t)/Zn is summable | N, p,|, provided {p,} satisfies
n=1

the following conditions:
(i) {p,} is monotomic diminishing, and P, is monotonic in-

1) Symbolically, {¢,}€BV; similarly by ‘f(x)e BV (h, k)’ we shall mean that f(x)
is a function of bounded variation over the interval (&, k).
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creasing, tending to o with n;
(ii) there exists a momnotonic increasing function of m, p, say,
ty=p¥+1 (<n—1, for sufficiently large m), such that
(a) P,—P,=0Q1), for k>[n¥], as n—>oo;
P
(b) =2=0(n-rs);

n

(e) X L SV DofAe-r  tS comvergent;
n PnPn—l [epl<k<ln

(d) . %“Kﬂl MP (=D} 201} | =O(Pa/0?),
(e)

(2-2)1)
o Dy / Ao

It may be remarked that the following theorem due to Varshney
follows from our theorem in the case in which 1,=n log (n+1) and
p,=1/(n+1).

Theorem A.* If ¢(t)e BV (0, z) then the series > A4,(t)/log (n+1)
is absolutely summable by Harmonic means.

2.2. We require the following lemmas for the proof of the
theorem.

Lemma 1.° If p, is mon-negative and nmon-increasing, then, for
0<a<b< o, 0Lt<n, and any n, we have

S pesin (n— k)t <KP..
Lemma 2. For a1;y integers a and b, we have
7 sin ne=0(1/1).
Lemma 3. If P,,—>ooq,1—;s n—>oo, then

>y =0(1/P,)

mit P,P,_,

=0(1), as n—>oo.

0<A<pf,

as m—» oo,
The proofs of Lemmas 2 and 3 are easy.
2.3. Proof of the theorem. Writing u,=vA,(t)/2,, and

t,= p,_u,
P, = 2
we have
n—1
tn—tn 1= Pv ) Uy v
v=0 P"
1 n—
— Pn v vln u’n—v'
Pan 1 g)( p p )
Now, since

2) Varshney [2].
3) McFadden [1].
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Thus, in order to prove the theorem, we have to show that

2] [ 0oty dt |< o,

where

Z(P Pe—D,P,) (n—k) cos (n—k)t .
nt n-1 k=0 "' " lzn-k

We observe that

S #tatnyde=— [ [ gtn, ) au) ot

(S ot wan)asol< Jiase) ([( ) omwan)l}

But by hypothesis f n]d¢(t)|<oo. Thus it is enough to show

0

that, uniformly in 0<t<r,
2
=3 [ o(n,w) du|=0(0).
0

g(n, t)=

and

We have

Z;-P-Pnl

T

<3

S (P~ p,,P,»S"‘g”—")t
k= n-k

2<P,,pk—p,,Pk>ﬂ‘l—g’l-’“)—t
n-k

PZ( P.p.—p pk)ﬂl_(ﬁ_@t_

nt n-1

+§1pp

p P sin (n k)t
+TE+1 P P.,, s —%n( npk pn Ic) Zn .

=>L+2%+>0, say.

Now since

|sin (n—k)t | <(n—Fk)t,
and on account of the hypothesis i), P,p,=P,p, for k<n, we have
P P,, ‘

S=% 5| S PP
1

LS P
SKﬁt2PP amn

n*t n-1 "7

(=%

<Kt-S1
1
<K.
Applying Abel’s transformation, we get
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oo [I‘*]
=<1 P S (P"-—__Pi> Dr_gin (n— Ictl
22 2 P Pn 1 kzo p pk Zn k ( )
oo [i‘n] -1
Dn A{(—P—”——&> } sin (n— t
P P[/‘*] ]
P <_n__ n > Z‘, p, sin (n—k)t
PP NPy Dy Augin B0
i1
<KP.S P " A{(E&_f‘&)_l_}
i1 P, P, , &=0 Dw  Di/ Au-s

P P *1 1
+KP, Z pn (__L_ #y >
=1 PP, ; \p, p[ﬂn] An—ruly]

& P 1
<KP, -+ KP, ~n
a TZH PnPn 1 + tz“ P Pn 1 pn ]n—[p:,]
<K,
by virtue of hypotheses (e), (b), and lemma 3.

Now we proceed to show that >'3=0(1).

We have
o n—1 3
> o P _Pp sin (n—k)t
pIESY e S Dp, SR
& sin (n—k)t
2+ P Pn g 1E= [l’n k(pk p") Aot
=2+, say.
Now
su=—1 |5 (p _P)sin(n—kyt-Pe_
TS PP, Ik " A
S
<K k_
"% PnPn 1 k‘—“%n]/zn_k
<K,

by hypotheses (a) and (c).
Applying Abel’s transformation to the inner sum in we have, by
Lemma 2,

= = A{ P.(p,— pn)} t
s 2 PnPn_ k%] . jRsin=e
+ i; ; P, 1(1’; 17— DPn) 2 ZSln (n— k)t‘
n- 1
S k(m pn) }H
2+ P,P,_ 1[/c Trnl {
1
+KT1,-2+1 PnPn_l n-l(pn—l_pn)
=2 321+ > g0, S2Y-
Also, by hypothesis (d),
1 P2

<K
2 < TTZE PP,
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IA

Kri}—l—z
+1 N
<K.

Now since p, is monotonic decreasing, while P, is monotonic

increasing, p,/P,<P,-./P,.1, so that p,/P, is monotonic decreasing,
and np,<P,.

Hence
— < pn-l _ﬁn_
PR KT%( P, P,,)
< DPr-1 ____pi
<Kex ( P, , P,,)
<Krp./P,
<K.

This completes the proof of our theorem.
My warmest thanks are due to Dr. T. Pati for his kind interest
in the preparation of this paper.
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