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67. Semigroups of Positive Integer Vectors"

Takayuki TAMURA and Morio SASAKI
(Comm. by Kenjiro SHODA, M.J.A., May 11, 1963)

1. Consider the set I of all the vectors (x,...,x,...,0,...)
with countable components of non-negative integers where a finite
number of x’s are positive and the remaining are 0, but all are not
0. The addition is defined as follows:

(xl,. ., xt,. .)-(y,. ., Yo" .)--(x + yl,. ., x+y,. .)
in which x+y is the usual addition of integers. Then I forms a
semigroup with respect to the addition. We want to determine all
the subsemigroups of I from the standpoint of the bases, and by
using these results, we can determine the subsemigroups of the mul-
iplicative semigroup of some positive integer vectors. The detailed
proof will be given in another paper.

When n is a positive integer and aeI, na denotes a+...
n

For convenience, I is considered as a subsemigroup of the module R
of all vectors whose components are rational numbers and all are 0
except a finite number of x’s where scalar-multiplying is regarded
as an operator, that is, if 2 is a rational number and a eI, 2a
=2(a,...,a,...)-(2a,...,2a,...) where 2a is the usual product of
and a.

2. Let M be a subsemigroup of L If M can be embedded into
the subsemigroup I-[xI]x-(x,. ., x, 0...), x-O, i>k} and never
into I,(k’<k), then the dimension of M is said to be k and denoted
by dim. M=k or M is called a k-dimensional subsemigroup of /, or,
simply, k-dimensional semigroup. If there is no finite k, the dimen-
sion of M is said to be infinite. If M is k-dimensional, every element
x of M can be expressed, as x--(x,..., x) without loss of generality.
A subset B of a finite or infinite dimensional M is called a generator
system if each element a of M is of the form a--2b+...
where 2 are positive integers and beB and m is not fixed. If B is
minimal generator system of M in the sense of the inclusion relation,
then B is called a basis of M. If B consists of finite elements, M
is said to have a finite basis, and the number of elements of B is
called the basis-order of M.

Lemma 1. A subsemigroup M of I has a unique basis.
A finite number of elements b,..., b in M are said to be linearly

1) This paper was delivered in the Meeting of American Mathematical Society in
Los Angeles in November, 1962.
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independent if b+... +b--0 (where 0 is the zero-vector and ’s
are rational numbers) implies $--... =-0. If M is n-dimensional,
the basis B contains a subset B composed of n elements which are
linearly independent. B is called a linearly independent basis of M.
B is not unique in general.

Let M be an n-dimensional semigroup (n< ). Every element
of the basis B of M can be uniquely expressed by a linear combina-
lion of elements of B: b+... +.b where ’s are rational numbers
and b s B.

Let B be the matrix of (m, n)-type, n< o, all the row-vectors
of which form a basis of the n-dimensional M. We note that m
denotes an ordinal number _<_w, 0 being the first non-finite ordinal;
and if the cardinal of m is denoted by , is the basis-order of
M, _< N0. Let B be the matrix of (n, n)-type all the row-vectors
of which form a linearly independent basis of M. is called the
basis matrix of M and is called the linearly independent basis
matrix of M. Then we can determine a. matrix of (m,n)-type
P=(P) where P is a rational number such that --PB. P is
called the basis transformation matrix of M and we may denote
P(M) if M is specified. We define the equivalence of the matrices
of (m, n)-type: Two matrices P and Q are said to be equivalent if
P and Q are same type and if there are a permutation matrix U
of (m, m)-type and a regular matrix V of (n, n)-type such that UPV
=Q. By a permutation matrix we mean a matrix in which every
row and every column contain only one non-zero element 1.

Theorem 1. Let M and M’ be n- and n’-dimensional semigroups

(n< c, n’< o). M and M’ are isomorphic iff n--n’ and P(M) and
P(M’) are equivalent.

Corollary. Suppose dim. M=dim. M’--I and let Ibm,..., b} and
Ibm,..., b,} be the bases of M and M’ respectively such that

b<b, b<b for i<j.
M and M’ are isomorphic iff k--k’ and b,/b;--...--b/b (--rational
number).

Let n_>2. Consider a mapping of an n-dimensional M into
the (n--1)-dimensional Euclidean space En- as follows"

(a) ((a,, a)) (a/ a an/ a
where

lal =Ea .
(a) is called the ratio image of a, and (M) is called the ratio image
of M. If a--2b+...--2nbn, beB, rational numbers not all zero,
then

+
i=1



No. 5] Semigroups of Positive Integer Vectors 291

where

m-+- +m’
If M is 1-dimensional the basis-order of M is finite; it is equal

to at most the element of M in the sense of the usual ordering.
This result was proved by K. Tetsuya and one of the authors 1.
However, if M is n-dimensional (nl), it is not true in general.

Theorem 2. An n-dimensional semigroup M has a finite basis

iff the ratio image (M) of M is contained in a convex polyhedron
generated by (B) on rational numbers where B’ is a subset of B.

3. Suppose that there is given an infinite sequence of d-dimen-
sional semigroups S,d, dd, ij, with the system of isomor-
phisms f of S into S(ij) satisfying f.f(x)=f(x),xS. The
sequence {S] with isomorphisms {f[} is denoted by {S;f[}. We can
define the limit semigroup of a sequence [S;f[} just as the limit
group of a sequence of groups. For the proof of Theorems 4,5 it
is necessary to keep {s;f[} in certain standard form, but the explana-
tion is omitted here.

Theorem 3. Let {S;f]} be a sequence of finite dimensional
semigroups. Then the limit semigroup S of {S;f]} is an infinite
dimensional semigroup. Conversely an infinite dimensional semi-
group S is the limit semigroup of a certain sequence {S; f]} of finite
dimensional subsemigroups S of S.

Theorem 4. Let S and T be the limit semigroups of {Si; f} and
{Tp; g} respectively. S and T are isomorphic iff any Si is isomorphic
into certain T,, under the mapping " and any Tp is isomorphic

--,(x) and gq(y) ’(y),into certain S, under 4’ such that f](x) "
xS, y T.

Let B() and B) be the basis and the linearly independent basis
of n-dimensional S (i--1, 2,...) respectively. We may assume f:._
(B-))B). Then the basis B and a linearly independent basis B
of the limit S of {S;f[} are given as follows;

B= U B"), B-- B’).
=i

Since we see f.+(B())cB"/) and f+(B<)--B)cB<+--B(/+,
we have one of the basis transformation matrix P(S+x) of S+, as
follows:

P(S) [--:--, P(Si/)-I-0 -4-::---i---;’
i--1,2,...

where, if P(S) is of (m, n)-type, then P(S/ 1) is of (m+ 1, hi+ 1)-type,
m/l<=m+w; and E(/" is the identity matrix of degree
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Therefore, we can define the basis transformation matrix P(S)as
as follows:

P(S) 0
P(z)

0 E"+) 0

Ai+I
0 E‘+) 0

Ai+2

where P(S) is of type (m, n)
m<w+w+... _2, n__<.

The matrices P and Q of type (m, n) are said to be equivalent
if there are a permutation matrix U of type-(m, n) and a regular
matrix V of type-(n, n) such that UPV=Q. We note that an (,
matrix V=(v), i, j_>_l, is called regular if V contains regular subma-
trices, V, -(v), l<__i<=k, l<j<k, s--l, 2,....

Then we have
Theorem 5. Let S and T be infinite dimensional semigroups.

S and T are isomorphic iff P(S) is equivalent to P(T).
Thus we see that, for a finite or infinite dimensional semigroup

S, the basis transformation (m, n)-type matrix P(S) over rational
numbers is uniquely determined within equivalence. P(S) is char-
acterized by the following conditions. Let P(S)-(p).

(1) Any row vector of P cannot be generated by the other row
vectors of P.

(2) Any row vector a of P is non-negative where a-(a,...,
a,...) is called negative if a<0 for all i.

(3) There is a positive rational column vector

x- x x>O

Xn
such that a.x--ax+...A-ax>O for all row vectors a of P.

(4) There is a positive integer such that all lp are integers.
In particular, if m and n are finite, (3) and (4) are redundant.

Also we remark that the additive semigroup S is characterized by a
commutative free semigroup with generating relations which are
expressed by using the matrix P.

4. Consider the set J of all the vectors (x,..., x, 1,...) with
countable components of positive integers where a finite number of
x’s are > 1 and the remaining are 1, but all are not 1. The multiplica-
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tion is defined as follows:
., ., .,

in which xy is the usual multiplication of integers. In this section,
a subsemigroup N of J shall be called a multiplicative semigroup (in
J). To avoid confusion, we shall call a semigroup in the previous
sections an additive semigroup (in I). We can define the 4imension,
the basis, the basis-order of a multiplicative semigroup N in the same
way as those of the additive semigroup. The dimension of N which
we shall denote by m-dim. N--2. We can easily prove that Lemma
1 holds even in this case.

Let a--(a,..., a,...) be any element of N. a has the expres-
sion of the product of prime factors:

For a fixed i,/i denotes the cardinal of the set of the distinct primes
which appear in the factorization of ai, a running throughout N and
let --max. V which we call the primary order of N.

Let N be a multiplicative semigroup with the m-dimension ,
the basis-order /, the primary order .

Theorem 6. () If o and c, then N is isomorphic to
an additive semigroup which has finite dimension and of the same
basis-order as N.

(2) If --c or --, then [-- and N is isomorphic to an
additive semigroup which has infinite dimension and infinite basis-
order.

5. Again consider the set I in which the multiplication is defined
in the same way as in J. Then the semigroup is denoted by I.
Let K be a subsemigroup of I and a be any element of K:a
-(al,..., a,...). D(a) is defined to be the set of indices i such that
a0.

We see
D(a)# for every a
D(a) is a finite subset of {1, 2,...}
D(ab)--D(a)D(b).

The system [D(a); aK} is a semilattice with respect to ), and hence
we get a semilattice decomposition of K under the homomorphism
a->D(a). Cleary the inverse image of/)(a) is a multiplicative semi-
group of finite dimension.

Theorem 7. A subsemigroup K of I is isomorphic to a semi-
lattice of finite dimensional multiplicative semigroups in J.
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