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67. Semigroups of Positive Integer Vectors®

Takayuki TAMURA and Morio SASAKI
(Comm. by Kenjiro SHODA, M.J.A., May 11, 1963)

1. Consider the set I of all the vectors (x;,---,%;+-+,0,-++)
with countable components of non-negative integers where a finite
number of x/s are positive and the remaining are 0, but all are not
0. The addition is defined as follows:

(a;l,. oy Xyt .)_|_(yl’. e Yp .):(xl_i_yl’. Y, .)
in which #;+y,; is the usual addition of integers. Then I forms a
semigroup with respect to the addition. We want to determine all
the subsemigroups of I from the standpoint of the bases, and by
using these results, we can determine the subsemigroups of the mul-
tiplicative semigroup of some positive integer vectors. The detailed
proof will be given in another paper.

When 7 is a positive integer and acl, na denotes a+---+ael.

n
For convenience, I is considered as a subsemigroup of the module R
of all vectors whose components are rational numbers and all are 0
except a finite number of x,’s where secalar-multiplying is regarded
as an operator, that is, if 2 is a rational number and acl, ia
=20y, + 5 Ay -+ )=(Aay,- -+, A0,y - -) Where Aa,; is the usual product of
2 and a,.

2. Let M be a subsemigroup of I. If M can be embedded into
the subsemigroup I, ={xel|x=(x,-+-, %, 0---),2,=0, 1>k} and never
into I,(k'<k), then the dimension of M is said to be %k and denoted
by dim. M=k or M is called a k-dimensional subsemigroup of I, or,
simply, k-dimensional semigroup. If there is no finite %k, the dimen-
sion of M is said to be infinite. If M is k-dimensional, every element
2 of M can be expressed as x=(x,,-- -, %,) without loss of generality.
A subset B of a finite or infinite dimensional M is called a generator
system if each element a of M is of the form a=2a,b;4:--+1,b,
where 1, are positive integers and b, B and m is not fixed. If Bis
minimal generator system of M in the sense of the inclusion relation,
then B is called a basis of M. If B consists of finite elements, M
is said to have a finite basis, and the number of elements of B is
called the basis-order of M.

Lemma 1. A subsemigroup M of I has a unique basis.

A finite number of elements b;,::-,b, in M are said to be linearly

1) This paper was delivered in the Meeting of American Mathematical Society in
Los Angeles in November, 1962.
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independent if £,b,+----+£,b,=0 (where O is the zero-vector and &,’s
are rational numbers) implies &,=--.=§,=0. If M is n-dimensional,
the basis B contains a subset By composed of » elements which are
linearly independent. B; is called a linearly independent basis of M.
B, is not unigue in general.

Let M be an n-dimensional semigroup (< o). Every element
of the basis B of M can be uniquely expressed by a linear combina-
tion of elements of B;: &b,+ -+ +£,b, where £s are rational numbers
and b,c B;.

Let B be the matrix of (m, n)-type, n<< o, all the row-vectors
of which form a basis of the n-dimensional M. We note that m
denotes an ordinal number Zw, » being the first non-finite ordinal;
and if the cardinal of m is denoted by m, m is the basis-order of
M, m< N, Let B, be the matrix of (n,n)-type all the row-vectors
of which form a linearly independent basis of M. is called the
basis matrix of M and , is called the linearly independent basis
matrix of M. Then we can determine a matrix of (m, n)-type
P=(P;;) where P,, is a rational number such that =PB;. P is
called the basis transformation matrix of M and we may denote
P(M) if M is specified. We define the equivalence of the matrices
of (m, n)-type: Two matrices P and @ are said to be equivalent if
P and @ are same type and if there are a permutation matrix U
of (m, m)-type and a regular matrix V of (n, n)-type such that UPV
=@. By a permutation matrix we mean a matrix in which every
row and every column contain only one non-zero element 1.

Theorem 1. Let M and M’ be n- and n'-dimensional semigroups
m< oo, n' <), M and M’ are isomorphic iff n=n' and P(M) and
P(M') are equivalent.

Corollary. Suppose dim. M=dim. M'=1 and let {b,,---, b} and
{01, - -, b}} be the bases of M and M’ respectively such that

b,<b, b < for i<J.
M and M' are isomorphic iff k=k' and b,/b]=---=b,/b}; (=rational
number).

Let n>2. Consider a mapping ¢ of an nm-dimensional M into
the (n—1)-dimensional Euclidean space E" ' as follows:

¢(a)=§0((a17° ) an))___(a2/'a[r° * %y an/,a,)
where
la| =i2=1ai'

¢(a) is called the ratio image of a, and ¢(M) is called the ratio image

of M. If a=1,b,+---+2,b,, b,eB;., A, rational numbers not all zero,
then

e(a)=p9(b,)+ - - + + 1,0(b,), gﬂﬁl
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where
m1+ ce -]-mn’

If M is 1-dimensional the basis-order of M is finite; it is equal
to at most the element of M in the sense of the usual ordering.
This result was proved by K. Tetsuya and one of the authors [1].
However, if M is n-dimensional (n>1), it is not true in general.

Theorem 2. Amn n-dimensional semigroup M has a finite basis
iff the ratio image (M) of M is contained in a convex polyhedron
generated by ¢(B) on rational numbers where B is a subset of B;.

3. Suppose that there is given an infinite sequence of d;-dimen-
sional semigroups S, d, <, d,<d; 1<j, with the system of isomor-
phisms f/ of S, into S,(1<j) satisfying fjf/(x)=f*), xeS, The
sequence {S;} with isomorphisms {f/} is denoted by {S;f7}. We can
define the limit semigroup of a sequence {S;f/} just as the limit
group of a sequence of groups. For the proof of Theorems 4,5 it
is necessary to keep {s,;f?} in certain standard form, but the explana-
tion is omitted here.

Theorem 3. Let {S; f?} be a sequence of finite dimensional
semigroups. Then the limit semigroup S of {S; fi} is an infinite
dimensional semigroup. Conversely an infinite dimensional semi-
group S is the limit semigroup of a certain sequence {S;; ff} of finite
dimensional subsemigroups S, of S.

Theorem 4. Let S and T be the limit semigroups of {S; fi} and
{T,; g} respectively. S and T are isomorphic iff any S; is isomorphic
into certain T, under the mapping ¢! and any T, is isomorphic
anto certain S, under ¥ such that fi(x)=vyhei(x) and gi(y) =5 (),
xeS, yeT,.

Let B®” and B be the basis and the linearly independent basis
of m;-dimensional S; (¢=1,2,---) respectively. We may assume f7_,
(B§)CB$. Then the basis B and a linearly independent basis B.
of the limit S of {S;;f/} are given as follows;

B={B®,  B,={B®.
i=1 i=1

Since we see ﬁ+1(B(i))CB<i+1) and fZH(B(D—Bg))CB(“D—BﬁHD,
we have one of the basis transformation matrix P(S,,;) of S;., as
follows:

E© PS) 0 ,
P(Sl) - {AIJ: P(Stn) = 0 """" E"“l) y 1=1,2,---

M m;=2;|b;].

where, if P(S;) is of (m, n,)-type, then P(S,.,) is of (m,.q, 7., .)-tyDpe,
m =m;+o; and E“'Y is the identity matrix of degree n,,;,—n,.
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Therefore, we can define the basis transformation matrix P(S) as
as follows:

CPS) 0
P) = | wimrpmian
A
0 E+? 0
Ai +2

where P(S) is of type (m, n)
mSwtot+- =04 nlo.

The matrices P and @ of type (m,n) are said to be equivalent
if there are a permutation matrix U of type-(m,n) and a regular
matrix V of type-(n, ») such that UPV=@Q. We note that an (0, »)-
matrix V=(v,,), 4, j=1, is called regular if V contains regular subma-
trices, Vi, =), 1215k, 1575k, s=1,2,---.

Then we have

Theorem 5. Let S and T be infinite dimensional semigroups.
S and T are isomorphic iff P(S) is equivalent to P(T).

Thus we see that, for a finite or infinite dimensional semigroup
S, the basis transformation (m, n)-type matrix P(S) over rational
numbers is uniquely determined within equivalence. P(S) is char-
acterized by the following conditions. Let P(S)=(p,,).

(1) Any row vector of P cannot be generated by the other row
vectors of P.

(2) Any row vector a of P is non-negative where a=(a,,- -,
a,;,-+-) is called negative if a,<0 for all 4.

(8) There is a positive rational column vector

such that a-2=a,2,++--+a,2,>0 for all row vectors a of P.

(4) There is a positive integer [ such that all Ip;, are integers.

In particular, if m and n are finite, (3) and (4) are redundant.
Also we remark that the additive semigroup S is characterized by a
commutative free semigroup with generating relations which are
expressed by using the matrix P.

4. Consider the set J of all the vectors (x,,---,%;,1,---) with
countable components of positive integers where a finite number of
xs are >1 and the remaining are 1, but all are not 1. The multiplica-
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tion is defined as follows:
(xv' coy Lyt ’)(yl" Yo ')=(x1y1" ey XYy e ')

in which z,y, is the usual multiplication of integers. In this section,
a subsemigroup N of J shall be called a multiplicative semigroup (in
J). To avoid confusion, we shall call a semigroup in the previous
sections an additive semigroup (in I). We can define the dimension,
the basis, the basis-order of a multiplicative semigroup NN in the same
way as those of the additive semigroup. The dimension of N which
we shall denote by m-dim. N=1 We can easily prove that Lemma
1 holds even in this case.

Let a=(a,,---,a;---) be any element of N. a, has the expres-

sion of the product of prime factors:

a;=piipist- - - pi .
For a fixed 4, #, denotes the cardinal of the set of the distinct primes
which appear in the factorization of a,, @ running throughout N and
let #=max. p; which we call the primary order of N.

Let N be a multiplicative semigroup with the m-dimension 2,
the basis-order g, the primary order v.

Theorem 6. (1) If 1< and v<oo, then N is tsomorphic to
an additive semigroup which has finite dimension and of the same
basis-order as N.

(2) If A== or v=oo, then p=o and N is isomorphic to an
additive semigroup which has infinite dimension and infinite basis-
order.

5. Again consider the set I in which the multiplication is defined
in the same way as in J. Then the semigroup is denoted by I*.
Let K be a subsemigroup of I* and a be any element of K:a
=(y,*++, @y -+). D(a) is defined to be the set of indices ¢ such that
a;3x0.

We see

D(a)=[] for every a

D(a) is a finite subset of {1,2,---}

D(ab)=D(a)N D().
The system {D(a); acK} is a semilattice with respect to (], and hence
we get a semilattice decomposition of K under the homomorphism
a—>D(a). Cleary the inverse image of D(a) is a multiplicative semi-
group of finite dimension.

Theorem 7. A subsemigroup K of I* is isomorphic to a semi-
lattice of finite dimensional multiplicative semigroups in J.
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