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64. On a Special Metric Characterizing
a Metric Space oI dim <-n

By Jun-iti NaaTA
Department of Mathematics, Osaka City University

(Comm. by Kinjir5 KUNUG, M.J.A., May 11, 1963)

Once we have characterized [3J a metric space of covering
dimension <__n by means of a special metric as follows.

A metric space R has dim<_n if and only if we can introduce
a metric p in R which satisfies the following condition: For every

0 and for every n-3 points x, Yl,’", Y/. in R satisfying1)

p(S,/.(x), y) < e, i-- 1,..., n +2,
there is a pair of indices i, j such that

y <
For separable metric spaces, this theorem was simplified by J.

de Groot [2J as follows.
A separable metric space R has dim<_n if and only if we can

introduce a totally bounded metric p in R which satisfies the follow-
ing condition:

For every n+3 points x, yl, y in R, there is a triplet of
indices, i, j, k such that

The first theorem is not so smart though it is valid for every
metric space. The problem of generalizing the second theorem,
omitting the condition of totally boundedness, to general metric
spaces still remains unanswered. However, we can characterize the
dimension of a general metric space by a metric satisfying a stronger
condition as follows.

Theorem. A metric space R has dim<__n if and only if we can
introduce a metric p into R which satifises the following condition:

For every n+3 points x, y,...y/, in R, there is a pair of
indices, i, j such that

p(y, y) p(x, y) (ij).
Proof. The proof of this theorem is never simple.) Here we

shall only show the proof of sufficiency and the outline of the proof
of necessity.

Sufficiency. We shall prove that the following weaker condition
is sufficient for R to have dim __<n.

We can introduce a metric p into R such that for a definite

2) The detailed proof will be published in some other place.
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number 0 and for every n3 points ,y,...,y/ in R with
p(x, y)<, j--l,..., n2, there is a pair of indices i, j such that

For n--0, the condition for p implies that we can introduce a
non-Archimedean metric into R. Hence by de Groot’s theorem [1
R has dim =<0. To prove our assertion by induction we assume its
validity and suppose p is a metric satisfying the condition for 0
and for every n+4 points x, y,’’’yn/ in R. Let F be a given closed
set of R; then for an arbitrary positive number e, we consider
the open neighborhood

S(F)--{S.(y)IyF}
of F. To assert dim R<=n+l it suffices to show

dim BS,(F) <_ n
where BS.(F) denotes the boundary of S.(F). If we denied the
assertion, then by the inductive assumption there would be
points x, Y,’’’Yn/. in BS,(F) such that

< >
for every pair i, 3" with i#j. We choose a small neighborhood U(x)
of x such that for every point x’ of U(x), p(x’, y)<e and p(y, y)
p(x’,y) hold. Then there exists a point y/a of F satisfying
S,(Yn/)U(x)4=. Take a point x’eS.(y,/)U(x); then

p(x’, y)<s<, j--1,..., n+3,
p(y,, y)>p(x’, y), ij, 1<=i, j<=n+2,
P(Y,, Yn+a)e>P(x’, Yn+a), i--l,..., n+2,
p(y/, y)>=z>p(x’, y), j----i,..., n+2.

But this contradicts the property of p. Therefore we can conclude
that

dim BS,(F <= n
and accordingly

dim R<=n+l.
To carry out the proof of necessity we need the following ter-

minology which is a slight modification of the concept ’rank’ of a
collection of sets established in [5 or [6].

Definition. Let (R) be a collection of subsets.of R. We call the
Rank of (R) not greater than n and denote it by Rank (R) <= n if (R) has
the following property.

If U,-.., U (R), U... U4:, U,U for every pair i, 3", with
i 4:3", then <__ n.

Necessity. The point of the proof is to define a sequence
( 1 >.** >.>** >...
of locally finite open coverings such that
(2) mesh --sup {(V)[Ve]<I/m
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and a locally finite open covering for each sequence m,..., m
of integers with l=<mm. <m such that

( 4 if 2 -’ +... +2->2-’+ +2 -q, then ,..,> ’,...q,
5 Rank ,..,[lm<m<...<mp}n+l.

n+l
Let us decompose R by the decomposition theorem as R--A

for 0-dimensional spaces A, i--l,..., n+l. Now, we shall define, ,..., and {k,...p [lgm <..- <m;gm} satisfying the follow-
ing condi’tions besides (1), (2), (3), and (4): If we put, for brevity,
{ ,... 11m<... <mm}-{,. ., (}, then
6 U, U’e implies either U U’ or, U= U’

(7) U, U’e...() and U U’ imply UU’,
(8) Rank. .()gn+l,
(9) odpB(...())gi-1 for peA,
where for a collection of subsets and a point p of R, B() denotes
the collection) {B(U)] Ue} and ordp denotes the greatest number
of the members of which contain p.

For m--l, we construct a locally finite open covering

={V]aeA} with ordgn+l, mesh<l, where for a collection

of subsets, denotes the collection {V[ Ve}. Then there is an open

V V. Then, as we have showncovering [VA} for which
in [4, Lemma 2.1, we can construct open sets V, aeA such that

ord{B(V)[aA}gi--1 for peA.
We choose from {V[aeA} the members v. for which "
(flA) implies v.--V and make a collection out of them. Then
it is easy to see that -- is the locally finite open eovering
satisfying all the required conditions.

Now, let us assume that we have already defined ,..., and,...,) to define + and {,)+,..., ,+)}--{,... ]1m... m--m+l]. First we eonstruet a locally finite open covering
with mesh 1/(m+1), ** such that

(10) if U,...,Ue...)and U...U,--,
then

Z(U, )... S(U, )--,
(11) for each peR, S(p,) meets only finitely many members of

(12) if U, U’e () and UU’, then S(U,)U
(13) if U, U’e...()and UU’, then S(U,)U’.

3) We often call a collection of subsets a collection. B(U) denotes the boundary
of U.
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Since (R)...(R)) is locally finite, we can choose such 3. Let
--{VIaeA}, then we construct an open covering ’--{WIaA}
satisfying WV. Since each S(V, ) meets at most finitely many
of Ue.. .), for each of those U we can define an open set
V,(U) such that

(15) if U# U’, then either V(U)C V,(U’) or V.(U’)C V.(U),
(16) if Ue,..., U’e,..., 2-,+ +2-<2-’+ +2-, then

v.( y,( u’).
By virtue of (9) we can choose V,(U) satisfying‘)

(17) ordpB(...()’)i--1 for peA,,
too, where ’=[V(U)[aeA, Ue...()}. Suppose S,...v(V)
U is a member of ... , then we put

S,...+(V)-{V(U)]aeA, S(V,)

By (11) $,...,,+ is a locally finite open covering.
(18) We choose only those members of ,...+ which are not
contained in any other member and denote the collection of those
members also by ,...+. Adding these locally finite open coverings, l<m ... <m<m to the collection..mpm+l

we obtain a new collection ’--{,...,,)+,...,
Then we can see that this collection ’ of coverings satisfies the
conditions (6), (7), (8), and (9). We shall omit the proof in detail,
but only notice that the conditions (10), (12), (13), (14), (15), (16), (17),
(18) and (4), (6), (7), (8) for are needed for that purpose.-- For the precedingFinally we shall define +--+
covering ’ we construct a locally finite open covering such that

(19) Rank. .(+_
Since ’ satisfies (8) and (9), such a covering can be constructed by
a slight modification of the process used in [6, proof of Theorem 2.

Let W be a given member of . For every member U of
...(+)_ such that UW, UW#, we assign a point
q(W, U)eW--U. Then F(W)--[q(W, U)[UW, UWV, Ve
(+)_} is a closed set contained in W, because W meets only.. Hence by use of (9)finitely many members of

for ’, we can construct an open set V(W) for every We such
that)

(W)V(W)V(W) W,
ord . (+

_
{BV(W)] We}<i--I= for peA.

4) See [4], Lemma 2.1.
5) See [4], Lemma 2.1.
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Put
+ ’/=+ {(W) W; Y(W)Y(Wo)

and Woe imply V(W)-- V(Wo)}.
Then it is easy to see from (6), (7) for ]’ and (19) that -],"--{(R),. .,
(R)/} also satisfies (6), (7), (8), and (9). Thus we have defined ,
m-l, 2,... and (R),..., l_<_m ... (m which satisfy (1)-(5).

We now introduce a metric into R by use of the coverings

(R)..., l__<m (... <m and (R)0-{R} as follows:
p(x, y)--inf {2-’’+ +2-’,]yS(x, (R),...)}.

The proof that p is a metric is a slight modification of the proof of
Theorem 5 in [3. For that proof we need, besides the structure of

S,...(V), the conditions (1), (2), (3), (4), and (16). Here we shall only
prove that the metric p satisfies the desired special condition. Let
x, y,..., y/. be given n+3 points in R. For every 0 we obtain
m, 3"-- 1 n/2 such that. p(j) "

p(x, y)=<2-+ +2-’()<p(x,
and U (R)2 ) such that x, y U.
If follows from (5) that there exist U and U (i#j) such that
UU. Therefore

We take a pair i, j satisfying

for a sequence {,} of positive numbers converging to zero. Then
we obtain p(y, y)<=p(x, y), proving the necessity. Thus among the
conditions (6), (7), (8), (9) for (R),.-., (R)() (8) is essential. The other
conditions are needed only to continue the inductive argument.
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