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105. On the Completion of Algebraic Systems that Statisfy
the Conditions T, and T,

By Suketaka MITANI
(Comm. by Kinjird6 KUuNUGI, M.J.A., Sept. 12, 1963)

Continuing the study of the auther’s paper [3], we shall give in
this paper a generalization of Prof. Nakayama’s theorem of uniform
algebraic system.

Our generalization is naturally got from the theorems of the
paper [3] and the followings.

PROPOSITION. A completion (X*;B*) of a T, bow space is a T,
space if and only if for any leg f in X and any point xecX, there
exist some body V of f, and some meighborhood W of x, such that
V~W=¢. (This proposition is an ameliorated one of the proposition
mentioned at the end of [3] and can be proved easily.)

A T, algebraic system G is a T, space G which is an algebraic
system such that for any composition = defined in G, the function
f(a,b)=azrb (a,beG) is a continuous one from G XG into G, and that
any mappings defined on it as algebraic system, are also continuous.
We consider a T, algebraic system G, specially, with a bow 9B, such
that (G; 3B, 4) is a bow space, and let’s call it a bow algebraic system.
Further, if a bow algebraic system is complete as a bow space, then
the bow algebraic system is said to be complete.

A completion (G*; T*) of a bow algebraic system (G; %) is a bow
algebraic system such that;

(G the T, bow space (G*; T*) is the completion of T, bow space
(G; D),

(Gy) (G; D) is sub-algebraic system of (G*; T*).

LEMMA. Assume that a T, space (X;%) has its completion (X*;
B*) which itself is T, space. Then (X*;B*) is a T, space, if and
only if for any minimal Cauchy filter f in X and for arbitrary Wef,
there exists Vef such that for every Cauchy filter of in X if Veg
then W belongs to the minimal Cauchy filter contained in g.

THEOREM 9. There exists a completion of bow algebraic system
(G; B) if and only if;

(E,) (G;DB) satisfies the conditions 1, 2, of auther’s paper [3],

(BE;) for every Cauchy filter f, in (G; ) and for every composi-
tion = defined in (G;B), the filter jrg is a Cauchy filter,

(BE;) (G; B) satisfies the conditions of lemma and proposition,

(E,) for any mapping f defined on it as algebraic system and
for any leg 7 in G, {f(A)| Aecf} generates a Cauchy filter in G.
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Provided that fzg is the filter generated by {AxB|Aecf{, Beg}, for
every filters f, g and for every composition .

THEOREM 10. A completion of a bow algebraic system is uniquely
determined.
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