105. On the Completion of Algebraic Systems that Statisfy the Conditions T_0 and T_3

By Suketaka MITANI

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1963)

Continuing the study of the auther's paper [3], we shall give in this paper a generalization of Prof. Nakayama's theorem of uniform algebraic system.

Our generalization is naturally got from the theorems of the paper [3] and the followings.

PROPOSITION. A completion $(X^*; \mathfrak{B}^*)$ of a T_2 bow space is a T_2 space if and only if for any leg \mathfrak{f} in X and any point $x \in X$, there exist some body V of \mathfrak{f} , and some neighborhood W of x, such that $V \frown W = \phi$. (This proposition is an ameliorated one of the proposition mentioned at the end of [3] and can be proved easily.)

A T_3 algebraic system G is a T_3 space G which is an algebraic system such that for any composition π defined in G, the function $f(a, b) = a\pi b$ $(a, b \in G)$ is a continuous one from $G \times G$ into G, and that any mappings defined on it as algebraic system, are also continuous. We consider a T_3 algebraic system G, specially, with a bow \mathfrak{V} , such that $(G; \mathfrak{V}, \Lambda)$ is a bow space, and let's call it a *bow algebraic system*. Further, if a bow algebraic system is complete as a bow space, then the bow algebraic system is said to be *complete*.

A completion $(G^*; \mathfrak{V}^*)$ of a bow algebraic system $(G; \mathfrak{V})$ is a bow algebraic system such that;

(G₁) the T_3 bow space (G^* ; \mathfrak{V}^*) is the completion of T_3 bow space (G; \mathfrak{V}),

(G₂) (G; \mathfrak{V}) is sub-algebraic system of (G^{*}; \mathfrak{V} ^{*}).

LEMMA. Assume that a T_2 space $(X; \mathfrak{V})$ has its completion $(X^*; \mathfrak{V}^*)$ which itself is T_2 space. Then $(X^*; \mathfrak{V}^*)$ is a T_3 space, if and only if for any minimal Cauchy filter \mathfrak{f} in X and for arbitrary $W \in \mathfrak{f}$, there exists $V \in \mathfrak{f}$ such that for every Cauchy filter of in X if $V \in \mathfrak{g}$ then W belongs to the minimal Cauchy filter contained in \mathfrak{g} .

THEOREM 9. There exists a completion of bow algebraic system $(G; \mathfrak{V})$ if and only if;

(E₁) (G; \mathfrak{V}) satisfies the conditions 1, 2, of author's paper [3],

(E₂) for every Cauchy filter \mathfrak{f} , in (G; \mathfrak{B}) and for every composition π defined in (G; \mathfrak{B}), the filter $\mathfrak{f}\pi\mathfrak{g}$ is a Cauchy filter,

 (E_3) $(G; \mathfrak{V})$ satisfies the conditions of lemma and proposition,

(E₄) for any mapping f defined on it as algebraic system and for any leg \dagger in G, $\{f(A) | A \in f\}$ generates a Cauchy filter in G. Provided that $\mathfrak{f}\pi\mathfrak{g}$ is the filter generated by $\{A\pi B | A \in \mathfrak{f}, B \in \mathfrak{g}\}$, for every filters \mathfrak{f} , \mathfrak{g} and for every composition π .

THEOREM 10. A completion of a bow algebraic system is uniquely determined.

References

[1] N. Bourbaki: Topology générale, Paris (1940).

[2] S. Mitani: On the completion of topological spaces, Comm. Math. s't Pauli (1961).

[3] ----: A note on the completion theory, Proc. Japan Acad., 39(5), 270 (1963).

[4] T. Nakayama: Set, Topology and Algebraic System (in Japanese), Tokyo (1943).