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104. Some Applications of the Functional.Representations
of Normal Operators in Hilbert Spaces. VIII

By Sakuji INOUE
Faculty of Education, Kumamoto University

(Comm. by Kinjirb KUNUG, M.b.A., Sept. 12, 1963)

On the assumption that S(2) and R(2) are the functions defined
in the statement of Theorem 1 cf. Proc. Japan Acad., Vol. 38, 263-
268 (1962), in the preceding papers we have discussed, under some
conditions, the distribution of 5-points of those functions in the exterior
of a suitably large circle with center at the origin and the relation
between the two finite exceptional values of those functions for the
exterior of that circle, by using the extended Fourier series expansion
of the function Z(2) defined as the sum of the two principal parts
of S(2). In the present paper, however, we shall treat, under some
conditions, those problems with respect to the derivatives of R(2)
and S(2) from a different point of view, by applying the integral
expressions of the derivatives of Z(2).

Theorem 21. Let S(2) and {2} be the same notations as those
defined in the statement of Theorem 1; let R(2)be the ordinary part
of S(2); let be a given positive constant satisfying the inequality
sup[ ; let {Zn} be a set of mutually distinct -points of R()
such that

} (n--1 2 3,...), z] (n)"
let

(h) #c, =c 2, 3,...),

where c is a non-zero complex constant and m is a positive integer;
let r, n=l, 2, 3,..., be positive numbers satisfying the conditions

(S) R(zn+nei)-R(zn) --R’(zn) <, inf
neiO

for a given positive number z less than 1; let R.(2)--R(2)--P,(2) and

S.(2)--S(2)--P,(), where

2);

and let Fn denote the circle ]2--z =r Then any z in the set {Zn}
is-a {(a--1)[R’(O)--cR(O)+ch}-point of R(2) and there exists a
suitably large positive integer L such that in the interior of each

of the circles F+, p--0, 1, 2,..., S(2) has {(a--1)[R’(O)--cR(O)+ch}-
points the number of which equals that of [(a--1)R’(O)--cR(O)+ch]-
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points of R(2) in the interior of the same circle as it; and more-
over the multiplicity of any {(a--1)[R’(O)--cR(O)J/cS}-point of each

of the functions R(2) and S(2) is equal to 1, as far as the {(a--l)
[R’(O)--cR(O)_ /cS}-point lies in the domain {2" [2] [z[}.

Proof. By applying the hypothesis (A) to Taylor’s power series
expansion of R(2) or to the extended Fourier series expansion of R(2)
which was shown in Part III [cf. Proc. Japan Acad., Vol. 38, 641-
645 (1962), we can first show without difficulty that

R’()--{R()(O)--cR(-)(O)}-+cR(),

where 01 and R()(0) denote 1 and R(0) respectively, so that

R(1)--R’(1)--P(1)
(17) =(a-- 1)R’(O)--cR(O) + cR().

Since, by hypotheses, Zn, n--1,2,3,..., are -points of R(2), it

turns out at once from (17) that R() has z, n--1,2,3,-.., as
{(a--1)[R’(O)--cR(O)+c}-points of itself. On the other hand, by
virtue of the application of (17) and the first condition in (B)we
have

R(z+%e)--{(a--1)R’(O)--cR(O)+c}
c[ [R(z+re) R(Zn)

(18) ]Crn{]P(zn)]--(a--1)]R’(O)--cR(O)] c --},
where P(Zn) is a polynomial in z of the degree m--1 by virtue of
the hypothesis R((O)--cR(-)(O)#O in (A) and hence the right-hand
side of (18) is positive for all suitably large values of n. Furthermore,
if we denote by Z(2) the sum of the first and the second principal
parts of S(2) and put

c-- S(pe")edt (sup 2 < P< , -- 0, 1, 2,... ),

then, as we have already shown in Part III,

Z e --gc. U
where the right-hand member is an absolutely and uniformly con-
vergent series of e-, so that

Z’ e c2pe =
It follows immediately from this result that

1 c, PZ’(z+re) 2(Zn+ rne) Z+re
1 S(pe")

pe" dt. (z+re)
pet 1

Zn@n
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1 S(pet)
(z+re-pe)

dtpeit

2:

for every n with z.%r.e" >p. In addition, since the extended

Pourier series expansion of S e is rewritten in he form

and sinee it ean be verified by the familiar Parseval identity that

{f" dt}-1 }
an application of Schwarz’s inequality to the just established relation
yields the inequality

(19) Z’(Zn+rne) pK(p)
Zn --rn-- fl)

holding for every n with z, > r,+p.
0n combining (18) and (19), we have

R(z.+rne) {(a-- 1)R’(0)--cR(O) +c}
[Z’(z,+re)]

> (]z]--r,--p)]cIr{IP(z)]--(a--1)IR’(O)--cR(O)I- ]c{]--}

for every z, with modulus greater than rn+p. Since, by the hypo-
thesis if[r,]z,I+-}#0 in (B), the numerator of the fraction on

the right-hand side of the last inequality becomes infinite with n,
there exists a suitably large positive integer L such that

(20) R(z+ +r+e)--[(a- 1)JR’(0)--cR(O) +c}
> ]Z’(z++r+e)] (p=0, 1,2,...).

Moreover it can be found from the equality S(1)=R(1)+(1)
that

S(1)-- {(a 1) JR’(0)- cR(O) +c{} [R(2)- [(a 1) (R’(0)- cR(O))+c{}
+Z’(1), where Z’(1) is regular inside and on each of the circles F+,
p=0, 1,2,..., because of the fact that ]z+I >r++p and so also

is R(1)because of the fact that clearly ()is a transcendental
integral function. 0n the other hand, z,, n= 1, 2, 3,..., are {(a-- 1)
[R’(O)--cR(O)+c}-points of R(1) as we have already shown at the
beginning of the proof of the present theorem.

An application of the Rouch6 theorem to (20) and the results
just pointed out leads us to the conclusion that in the interior of

each of the circles F+, p--0,1,2..., S(1) has {(a--1)[R’(O)--cR(O)
+c{}-points the number of which equals that of {(a--1)[R’(O)--cR(O)]
+c}-points of R(1) in the interior of the same circle as it. More-
over, since R(1)--[(a--1)[R’(O)--cR(O)+c{}--c{R(1)--} and since, as
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can be seen by means of the relation R’(ZL/p)=P(zL/p)+(a--1)
[R’(O)--cR(O) A-c deduced from (17) and of the inequality
--(a--1) IR"(O)--cR(O)] cl shown before, R’(z/) never vanishes

for any value of p-0,1,2,..., R(2)--{(a--1)[R’(O)--cR(O)+c has
z+ as its zero-point with multiplicity 1. Consequently the multiplicity

of any {(a--1)[R’(O)--cR(O)+c}-point of each of the functions R(2)
and S(2) is equal to 1, as far as the [(a--1)[R’(O)--cR(O)+c}-point
lies in the domain [2 [2[ z[}.

With these results the proof of the present theorem is complete.

Corollary 3. Let #R(0)--.R’(0.) and m=l in Theorem 21;let
c

z be an arbitrarily given positive number less than R’(O)--cR(O)+c,
not zero; let r be a positive number such that

(C) R(z+re)-R(zn) --R’(zn)’ < (n--1 2, 3,...)
reia

(it will be shown later on that in this case there exist in fact such
many r irrespective of n); let L be the least value of n satisfying
the condition

(D) ]z > pK(p) + r+ p, (sup 2 < p),
c r[ R’(O)--cR(O)+cS --where K(p)-- =- (< ); and let F denote the

circle 12--z.[-- for each value of p--0,1,2,.... Then ,--1,2,,..., are [R’(O)--eR(O)+e-oints of R’(2), and in the interior of
any circle F S’(2) has [R’(O)--eR(O)+e-oints the number of whieh
equals that of [R’(O)--eR(O)+e?-oints of R’(2) in the interior of
the same eirele F; and in addition, the multiplicity of any -point

z of R(2) is equal to 1, and R(0) R’(O) is the exceptional value

Proof. Sinee, by hypotheses, m--l, we have
e (0)+

as can be found from the first relation shown at the beginning of
the roof of heorem 1, and (21) implies that every z is a R’(O)
--eR(0)+e-oint of R’(2) and that the multiplicity of z as a -point
of R(2) equals 1 because of the fact that R’(z) is never ero by the

hypothesis R(0) R’(O). oreover it is a matter of simle manip-

ulations to show by (21) and the hypothesis R(*(0) =e, --1,2, ,...,
that

R((0)
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Accordingly R(0)--_R’(0) is the exceptional value of R(2), as we
c

were to prove.
Since it is easily verified by direct computation from (21) and

(22) that
R(z --re) R(z) R’(z)-- [R’(O)--cR(O)-l-ccre, (cre)"-

rei

there exist in fact positive numbers r satisfying (C) for all values
of n; and hence, by means of (21), (C), and the hypotheses concern-
ing 5 and e, we obtain
R’(z+re)--R’(O)--cR(O)+c c R(z+re)--R(zn)

]cr]R’(O)--cR(O)+cS] --0for such an r. Furthermore, by reference to (19) and this inequality,
we have

R’(z+re) [R’(O)--cR(O)+cS

(]z]--r--p)cr[[R’(O)--cR(O)+cS[

for every Zn with modulus greater than r+p, so that, by the hypo-
thesis concerning L,
[R’(z++re)--[R’(O)--cR(O)+cS]> [Z’(z++re)] (p=0, 1, 2,...).

In consequence, the Rouch theorem and the same reasoning as
that used in the course of the proof of Theorem 21 permit us to
assert that in the interior of any circle F S’(2)has [R’(O)--cR(O)
+cS-points the number of which equals that of [R’(O)--cR(O)+cSJ-
points of R’(2) in the interior of the same circle F, as we wished
to prove.

Theorem 22. Let S(2), [2}, a, and p be the same notations as
before; let R(2) be the ordinary part of S(2); let m be a positive
integer;let {Zn} be a set of mutually distinct 5-points of
such that a z] g ]z+ for every positive integer n and ]z
(n) let d=infR()(z) 0 let r be a positive number satisfy-

ing the condition

R(m-1)(Zn+re)--R(m-1)(z)--R(m)(Zn)ls (n--l, 2, 3,. .)
Teie

for a given positive number z less than d; and let L be the least
value of n such that

(E) Zn /(m-- +r+p,1) pK(p)
r(d--z)

{ 1 f gt} . hen, in the interior of eaehwhere g(p)-- S(pe)

eirele =f, has -oints the number
of which equals that of -points of R-’(2) in the interior of the
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same circle as it; and moreover, if the above hypotheses are satisfied
for every (4: oo) different from the finite exceptional value of R(-)(2)
and if $ is the finite exceptional value of S-)(2)for the domain
{2:I1 >}, then $ is also the finite exceptional value of R(-’(2).

Proof. Since, as can be seen from the expansion of

1 c (]] >p), we can verify without difficulty from the

termwise differentiability and integrability of a uniformly convergent
series that

z_.()_(_lF_ 1 N(+I)...(+m-)e.
=1

geit

()_(m-) j:-- S(pe") dt
2 1--

=(_)._(m-) Z(e)
(-e)

4t.
2=

Hence, for every z, with modulus greater than

]_.(z+re)] < (m-) ()(Iz]--)"
In consequence, we can establish without difficulty the former

assertion of the present theorem by reasoning exactly like that used
in the proof of Theorem 21. Moreover it is obvious that the latter
assertion is a direct consequence of the former one.


