93. Note on Balayage and Maximum Principles

By Masanori Kishi

Mathematical Institute, Nagoya University (Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1963)

1. Let Ω be a locally compact Hausdorff space, every compact subset of which is separable, and G be a positive lower semicontinuous kernel on Ω such that G(x, y) is locally bounded at any point $(x, y) \in \Omega \times \Omega$ with $x \neq y$. The adjoint kernel \check{G} of G is defined by $\check{G}(x, y) = G(y, x)$. Given a positive measure μ , its potential $G\mu(x)$ and adjoint potential $\check{G}\mu(x)$ are defined by

$$G\mu(x) = \int G(x, y) d\mu(y)$$
 and $\check{G}\mu(x) = \int \check{G}(x, y) d\mu(y)$

respectively.

This note is a summary of some relations among the balayage principle and related maximum principles in the potential theory. The details will be published later elsewhere.

- 2. Definitions. We say that a property holds G-p.p.p. on a subset $X \subset \Omega$, when any compact subset of the set of points in X at which the property is missing does not support any positive measure $\nu \neq 0$ with finite G-energy $\int G \nu d\nu$.
- (I) Continuity principle. For any positive measure μ with compact support $S\mu$, if the restriction of $G\mu(x)$ to $S\mu$ is finite and continuous, then $G\mu(x)$ is finite and continuous in the whole space Ω .
- (II) Balayage principle. For any compact set K and any positive measure μ , there exists a positive measure μ' , supported by K, such that

$$G\mu'(x) \le G\mu(x)$$
 in Ω ,
 $G\mu'(x) = G\mu(x)$ $G-p.p.p.$ on K .

(III) Equilibrium principle. For any compact set K, there exists a positive measure μ , supported by K, such that

$$G\mu(x) \le 1$$
 in Ω ,
 $G\mu(x) = 1$ G - $p.p.p.$ on K .

- (IV) Domination principle. For a positive measure μ with compact support and finite G-energy and for a positive measure ν with compact support, an inequality $G\mu(x) \leq G\nu(x)$ on $S\mu$, the support of μ , implies the same inequality in Ω .
- (V) Maximum principle. For a positive measure μ with compact support, the validity of an inequality $G\mu(x) \leq 1$ on $S\mu$ implies that of the same inequality in Ω .

- (VI) Complete maximum principle. For a positive measure μ with compact support and finite G-energy and for a positive measure ν with compact support, if an inequality $G\mu(x) \leq G\nu(x) + a$ with a nonnegative number a holds on $S\mu$, then the same inequality holds in Ω .
- (VII) Strong maximum principle. If μ is a positive measure with compact support and finite G-energy and ν is a positive measure with compact support such that $G\mu(x) \leq G\nu(x) + a$ on $S\mu \cup S\nu$ with $a \geq 0$, then the same inequality holds in Ω .
 - 3. Theorems. The following is fundamental.

Theorem 1. Assume that the adjoint kernel \check{G} satisfies the continuity principle. If u(x) is a positive finite upper semicontinuous function on a compact set K, then there exists a positive measure μ , supported by K, such that

$$G\mu(x) \ge u(x)$$
 G-p.p.p. on K,
 $G\mu(x) \le u(x)$ everywhere on $S\mu$.

This follows from

Theorem 2. Given positive finite numbers a_{ki} and u_k $(k, i=1, 2, \dots, n)$, there exist non-negative finite numbers t_i $(i=1, 2, \dots, n)$ such that

$$\sum_{i=1}^{n} a_{ki}t_{i} \ge u_{k}$$
 for $k=1,2,\cdots,n,$
 $\sum_{i=1}^{n} a_{ji}t_{i} = u_{j}$ for every j with $t_{j} \ne 0$.

Theorem 3. If both G and its adjoint \check{G} satisfy the continuity principle, then the following four statements are equivalent;

- (1) G satisfies the balayage principle,
- (2) Š satisfies the balayage principle,
- (3) G satisfies the domination principle,
- (4) \check{G} satisfies the domination principle.

Contrary to these equivalences, even if G satisfies the equilibrium principle, the adjoint \check{G} does not in general, except for specific kernels, for example convolution kernels. We can state only

Theorem 4. When G and \check{G} satisfy the continuity principle, G satisfies the equilibrium principle if and only if G satisfies the maximum principle.

Theorem 5. Let \check{G} satisfy the continuity principle. Then G satisfies the complete maximum principle if and only if G satisfies the domination and maximum principles.

Theorem 6. Let \check{G} satisfy the continuity principle. Then G satisfies the complete maximum principle if and only if G does the strong maximum principle.

The complete maximum principle can be also characterized by the

following complete balayage principle.

Theorem 7. Let G and \check{G} satisfy the continuity principle. Then G satisfies the complete maximum principle if and only if G satisfies the complete balayage principle, that is, for any positive measure μ with compact support and any compact set K there exists a positive measure μ' , supported by K, such that

$$G\mu'(x) = G\mu(x) + 1$$
 G-p.p.p. on K $G\mu'(x) \le G\mu(x) + 1$ in Ω .

Now let N be another positive lower semicontinuous kernel.

(VIII) Balayage principle with respect to N. For any compact set K and any positive measure μ with compact support, there exists a positive measure μ' , supported by K, such that

$$G\mu'(x) = N\mu(x)$$
 G-p.p.p. on K
 $G\mu'(x) \le N\mu(x)$ in Ω .

(IX) Domination principle with respect to N. For any positive measure μ with compact support and finite G-energy and for any positive measure ν with compact support, the inequality $G\mu(x) \leq N\nu(x)$ on $S\mu$ implies the same inequality in Ω .

Theorem 8. Let G and \check{G} satisfy the continuity principle. Then G satisfies the domination principle with respect to N, if and only if G satisfies the balayage principle with respect to N.

4. Comments. For symmetric kernels $G(i.e. G \equiv \dot{G})$ Theorem 1 is well-known. It is verified by using the Gauss-Ninomiya variation. For non-symmetric kernels the variation is useless in its original form.

Theorem 2 follows from Kronecker's existence theorem [1] in the theory of combinatorial topology.

Ninomiya [6] first obtained Theorem 3 for symmetric kernels. Deny [4] followed to show the equivalence between (1) and (4) for strictly increasing diffusion kernels. Choquet and Deny [3] obtained Theorem 3 for regular kernels on a compact space which consists of a finite number of points.

Theorem 4 was obtained by Ninomiya [6] for symmetric kernels. The complete maximum principle was first introduced by Cartan and Deny [2]. They obtained Theorem 5 for symmetric kernels of positive type.

Theorems 6 and 7 are new. The former is an answer to the question raised by Deny $\lceil 5 \rceil$.

The balayage and domination principles with respect to N were introduced by Ninomiya [7]. Theorem 8 is a generalization of the result of Ninomiya who discussed symmetric kernels.

Theorems 6 and 7 in [6] can be verified for our non-symmetric kernels.

References

- [1] P. Alexandroff and H. Hopf: Topologie I, Berlin (1935).
- [2] H. Cartan and J. Deny: Le principe du maximum en théorie du potentiel et la notion de fonction surharmonique, Acta Sci. Math. Szeged, 12, 81-100 (1950).
- [3] G. Choquet and J. Deny: Modèles finis en théorie du potentiel, Jour. Anal. Math., 5, 77-135 (1956-57).
- [4] J. Deny: Les deux aspects de la théorie du potentiel, Sém. Bourbaki, No. 148, 18 pp. (1957).
- [5] —: Les principes du maximum en théorie du potentiel, Sém. Brelot-Choquet-Deny, 6° année, No. 10, 8 pp. (1962).
- [6] N. Ninomiya: Étude sur la théorie du potentiel pris par rapport au noyau symétrique, Jour. Inst. Polytech. Osaka City Univ., 6, 147-179 (1957).
- [7] —: Sur le problème du balayage generalisé, Jour. Math. Osaka City Univ., 12, 115-138 (1961).