91. Boundary Convergence of Blaschke Products in the Unit-Circle

By Chuji Tanaka
Mathematical Institute, Waseda University, Tokyo (Comm. by Zyoiti Suetuna, m.J.A., Sept. 12, 1963)

(1) Introduction. Let $B(z)$ be Blaschke products:

$$
B(z)=\prod_{n=1}^{\infty} b\left(z, a_{n}\right)
$$

where

$$
\begin{align*}
& b(z, a)=\bar{a} /|a| \cdot(a-z) /(1-\bar{a} z), \\
& 0<\left|a_{n}\right|<1 \quad(n=1,2, \cdots), \\
& \sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<+\infty . \tag{1.1}
\end{align*}
$$

In this note, we shall establish the following two theorems on boundary convergence of Blaschke-products.

Theorem 1 is concerned with the necessary and sufficient condition for $B(z)$ to be regular at $z=e^{i \theta}$:

Theorem 1. If $z=e^{i \theta}$ is not the limiting point of $\left\{a_{n}\right\}$, then $B(z)$ is absolutely and uniformly convergent to a regular function in the neighborhood of $z=e^{i \theta}$.

As its immediate consequences, we get
Corollary 1. For $B(z)$ to be singular at $z=e^{i \theta}$, it is necessary and sufficient that $z=e^{i \theta}$ is the limiting point of $\left\{a_{n}\right\}$.

Corollary 2. If $B(z)$ is regular at $z=e^{i \theta}$, then $B(z)$ is uniformly and absolutely convergent in the neighborhood of $z=e^{i \theta}$.

In the preceding paper ([2] 4-5), the author proved Corollary 1 by somewhat complicated method.

Theorem 2 is of Abelian type:
Theorem 2. If $B(z)$ is absolutely convergent at $z=e^{i \theta}$, then $B(z)$ tends uniformly to $B\left(e^{i \theta}\right)$ as $z \rightarrow e^{i \theta}$ within Stolz-domain with vertex at $z=e^{i \theta}$.

As its consequence, we have
Corollary 3. If $B(z)$ is absolutely convergent at $z=e^{i \theta}$, then $B\left(r e^{i \theta}\right)$ is continuously defined for $0 \leqq r \leqq+\infty$. by the unique formula: $\prod_{n=1}^{+\infty} b\left(r e^{i \theta}, a_{n}\right)$.

Corollaries 2 and 3 are remarkable phenomena, whose analogy in the case of Taylor series cannot exist evidently.
(2) Proof of Theorem 1. By the simple computation,

$$
\begin{equation*}
B(z)=\prod_{n=1}^{+\infty}\left\{1+c\left(z, a_{n}\right)\right\} \tag{2.1}
\end{equation*}
$$

where

$$
c(z, a)=(1-|a|) /|a|-\left(1-|a|^{2}\right) /|a|(1-\bar{a} z) .
$$

Because $z=e^{i \theta}$ is not the limiting point of $\left\{a_{n}\right\}$, we can find two positive constants ε and $\delta(\varepsilon)$ such that

$$
\left|z-1 / \bar{a}_{n}\right| \geqq \varepsilon \text { for }\left|z-e^{i \theta}\right| \leqq \delta(\varepsilon) .
$$

Hence, by (2.1)

$$
\left|c\left(z, a_{n}\right)\right| \leqq\left(1-\left|a_{n}\right|\right) /\left|a_{n}\right|+\left(1-\left|a_{n}\right|^{2}\right) /\left|a_{n}\right|^{2} \varepsilon \text { for }\left|z-e^{i \theta}\right| \leqq \delta(\varepsilon),
$$

so that, by (1.1) $\sum_{n=1}^{+\infty} c\left(z, a_{n}\right)$ is absolutely and uniformly convergent in $\left|z-e^{i \theta}\right| \leqq \delta(\varepsilon)$. Since $c\left(z, a_{n}\right)$ is regular in $\left|z-e^{i \theta}\right| \leqq \delta(\varepsilon), B(z)=\prod_{n=1}^{+\infty}$ $\left\{1+c\left(z, a_{n}\right)\right\}$ is absolutely and uniformly convergent to the regular function in $\left|z-e^{i v}\right| \leqq \delta(\varepsilon)$, which is to be proved.
(3) Proof of Theorem 2. By (2.1)

$$
\left(1-\left|a_{n}\right|\right) /\left|e^{i \theta}-a_{n}\right| \cdot\left(1+1 /\left|a_{n}\right|\right) \leqq\left|c\left(e^{i \theta}, a_{n}\right)\right|+\left(1-\left|a_{n}\right|\right) /\left|a_{n}\right|
$$

so that, by (1.1) and $\sum_{n=1}^{+\infty}\left|c\left(e^{i \theta}, a_{n}\right)\right|<+\infty$, it follows that

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(1-\left|a_{n}\right|\right) /\left|e^{i \theta}-a_{n}\right|<+\infty . \tag{3.1}
\end{equation*}
$$

By the inequality:

$$
\left|1-\bar{a}_{n} r e^{i \theta}\right|>r\left|a_{n}-e^{i \theta}\right| \text { for } 0<r<1
$$

(3.2) $\quad\left|c\left(r e^{i \theta}, a_{n}\right)\right| \leqq\left(1-\left|a_{n}\right|\right) /\left|a_{n}\right|+\left(1-\left|a_{n}\right|\right) /\left|e^{i \theta}-a_{n}\right| \cdot(1+1 / \alpha) \cdot 1 / \beta$
for $0<\alpha \leqq\left|a_{n}\right|, 0<\beta \leqq r<1$. Taking account of (1.1), (3.1) and (3.2), $\sum_{n=1}^{+\infty} c\left(r e^{i \theta}, a_{n}\right)$ is absolutely and uniformly convergent for $0<\beta \leqq r<1$. Hence, $B\left(r e^{i \theta}\right)=\prod_{n=1}^{+\infty} b\left(r e^{i \theta}, a_{n}\right)$ is uniformly convergent for $0<\beta \leqq r<1$. Since $\lim _{r \rightarrow 1} \prod_{n=1}^{N} b\left(r e^{i \theta}, a_{n}\right)=\prod_{n=1}^{N} b\left(e^{i \theta}, a_{n}\right)$, by the uniform convergence of $B\left(r e^{i \theta}\right)([1]$ p. 339) we have

$$
\lim _{r \rightarrow 1} \lim _{N \rightarrow+\infty} \prod_{n=1}^{N} b\left(r e^{i \theta}, a_{n}\right)=\lim _{N \rightarrow+\infty} \lim _{n \rightarrow 1} \prod_{n=1}^{N} b\left(r e^{i \theta}, a_{n}\right),
$$

so that

$$
\lim _{r \rightarrow 1} B\left(r e^{i \theta}\right)=B\left(e^{i \theta}\right) .
$$

Therefore, by the boundedness of $B(z)$ in $|z|<1$, and E. Lindelöf's theorem

$$
\lim _{\substack{z \rightarrow i \theta \\ z \in S}} B(z)=B\left(e^{i \theta}\right),
$$

where S is S tolz domain with vertex at $z=e^{i \theta}$.
(4) Proof of Corollary 3. For $|z|>1$, we can put

$$
1 / B(z)=\prod_{n=1}^{+\infty} b\left(1 / z, \bar{a}_{n}\right) .
$$

By the convergence of $\sum_{n=1}^{+\infty}\left(1-\left|\bar{a}_{n}\right|\right), 1 / B(z)$ is Blaschke products defined in $|z|>1$. If $B\left(e^{i \theta}\right)$ is absolutely convergent, then $1 / B\left(e^{i \theta}\right)$ is also absolutely convergent because of $1 / B\left(e^{i \theta}\right)=\prod_{n=1}^{+\infty}\left(1+c_{n}\right)^{-1}=\prod_{n=1}^{+\infty}\left(1-c_{n}+O\left(c_{n}^{2}\right)\right)$,
where $c_{n}=c\left(e^{i \theta}, a_{n}\right)$.
Hence, by Theorem 2

$$
\lim _{r \rightarrow 1+0} 1 / B\left(r e^{i \theta}\right)=1 / B\left(e^{i \theta}\right)
$$

so that, again by Theorem 2

$$
\lim _{r \rightarrow \pm 10} B\left(r e^{i \theta}\right)=B\left(e^{i \theta}\right)
$$

Therefore, $B\left(r e^{i \theta}\right)$ is continuously defined for $0 \leqq r \leqq+\infty$ by the unique formula: $\prod_{n=1}^{+\infty} b\left(r e^{i \theta}, a_{n}\right)$, provided that $\prod_{n=1}^{+\infty} b\left(e^{i \theta}, a_{n}\right)$ is absolutely convergent.

References

[1] K. Knopp: Theory and Application of Infinite Series, London and Glasgow (1928).
[2] C. Tanaka: On functions of class U, Ann. Acad. Sci. Fenn. I.A., 1-12 (1962).

