91. Boundary Convergence of Blaschke Products in the Unit-Circle

By Chuji TANAKA

Mathematical Institute, Waseda University, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Sept. 12, 1963)

(1) Introduction. Let B(z) be Blaschke products:

$$B(z) = \prod_{n=1}^{\infty} b(z, a_n),$$

where

(1.1)
$$b(z, a) = \bar{a}/|a| \cdot (a-z)/(1-\bar{a}z)$$
$$0 < |a_n| < 1 \quad (n=1, 2, \cdots)$$
$$\sum_{i=1}^{\infty} (1-|a_n|) < +\infty.$$

In this note, we shall establish the following two theorems on boundary convergence of Blaschke-products.

Theorem 1 is concerned with the necessary and sufficient condition for B(z) to be regular at $z=e^{i\theta}$:

Theorem 1. If $z=e^{i\theta}$ is not the limiting point of $\{a_n\}$, then B(z) is absolutely and uniformly convergent to a regular function in the neighborhood of $z=e^{i\theta}$.

As its immediate consequences, we get

Corollary 1. For B(z) to be singular at $z=e^{i\theta}$, it is necessary and sufficient that $z=e^{i\theta}$ is the limiting point of $\{a_n\}$.

Corollary 2. If B(z) is regular at $z=e^{i\theta}$, then B(z) is uniformly and absolutely convergent in the neighborhood of $z=e^{i\theta}$.

In the preceding paper ([2] 4-5), the author proved Corollary 1 by somewhat complicated method.

Theorem 2 is of Abelian type:

Theorem 2. If B(z) is absolutely convergent at $z=e^{i\theta}$, then B(z) tends uniformly to $B(e^{i\theta})$ as $z \rightarrow e^{i\theta}$ within Stolz-domain with vertex at $z=e^{i\theta}$.

As its consequence, we have

Corollary 3. If B(z) is absolutely convergent at $z=e^{i\theta}$, then $B(re^{i\theta})$ is continuously defined for $0 \le r \le +\infty$ by the unique formula: $\prod_{i=1}^{+\infty} b(re^{i\theta}, a_n).$

Corollaries 2 and 3 are remarkable phenomena, whose analogy in the case of Taylor series cannot exist evidently.

(2) Proof of Theorem 1. By the simple computation,

(2.1)
$$B(z) = \prod_{n=1}^{+\infty} \{1 + c(z, a_n)\},$$

where

$$c(z, a) = (1 - |a|)/|a| - (1 - |a|^2)/|a|(1 - \overline{a}z).$$

Because $z=e^{i\theta}$ is not the limiting point of $\{a_n\}$, we can find two positive constants ε and $\delta(\varepsilon)$ such that

$$|z-1/\overline{a}_n| \ge \varepsilon \text{ for } |z-e^{i\theta}| \le \delta(\varepsilon).$$

Hence, by (2.1)

$$|c(z, a_n)| \leq (1 - |a_n|)/|a_n| + (1 - |a_n|^2)/|a_n|^2 \varepsilon \text{ for } |z - e^{i\theta}| \leq \delta(\varepsilon),$$

so that, by (1.1) $\sum_{n=1} c(z, a_n)$ is absolutely and uniformly convergent in $|z-e^{i\theta}| \leq \delta(\varepsilon)$. Since $c(z, a_n)$ is regular in $|z-e^{i\theta}| \leq \delta(\varepsilon)$, $B(z) = \prod_{n=1}^{+\infty} \{1+c(z, a_n)\}$ is absolutely and uniformly convergent to the regular function in $|z-e^{i\theta}| \leq \delta(\varepsilon)$, which is to be proved.

(3) Proof of Theorem 2. By (2.1)

$$(1-|a_{n}|)/|e^{i\theta}-a_{n}|\cdot(1+1/|a_{n}|) \leq |c(e^{i\theta},a_{n})|+(1-|a_{n}|)/|a_{n}|$$

so that, by (1.1) and $\sum_{n=1}^{+\infty} |c(e^{i\theta},a_{n})| < +\infty$, it follows that
(3.1) $\sum_{n=1}^{+\infty} (1-|a_{n}|)/|e^{i\theta}-a_{n}| < +\infty.$

By the inequality:

 $\begin{aligned} |1-\bar{a}_{n}re^{i\theta}| > r |a_{n}-e^{i\theta}| & \text{for } 0 < r < 1, \\ (3.2) \quad |c(re^{i\theta}, a_{n})| \leq (1-|a_{n}|)/|a_{n}| + (1-|a_{n}|)/|e^{i\theta}-a_{n}| \cdot (1+1/\alpha) \cdot 1/\beta \\ \text{for } 0 < \alpha \leq |a_{n}|, 0 < \beta \leq r < 1. \\ \text{Taking account of (1.1), (3.1) and (3.2),} \\ \sum_{n=1}^{+\infty} c(re^{i\theta}, a_{n}) & \text{is absolutely and uniformly convergent for } 0 < \beta \leq r < 1. \\ \text{Hence, } B(re^{i\theta}) = \prod_{n=1}^{+\infty} b(re^{i\theta}, a_{n}) & \text{is uniformly convergent for } 0 < \beta \leq r < 1. \\ \text{Since } \lim_{r \to 1} \prod_{n=1}^{N} b(re^{i\theta}, a_{n}) = \prod_{n=1}^{N} b(e^{i\theta}, a_{n}), & \text{by the uniform convergence of } B(re^{i\theta}) ([1] \text{ p. 339) we have} \end{aligned}$

$$\lim_{r\to 1}\lim_{N\to+\infty}\prod_{n=1}^N b(re^{i\theta},a_n) = \lim_{N\to+\infty}\lim_{r\to 1}\prod_{n=1}^N b(re^{i\theta},a_n),$$

so that

$$\lim_{r\to 1} B(re^{i\theta}) = B(e^{i\theta}).$$

Therefore, by the boundedness of B(z) in |z| < 1, and E. Lindelöf's theorem

$$\lim_{\substack{z \to e^{i\theta} \\ z \in S}} B(z) = B(e^{i\theta}),$$

where S is Stolz domain with vertex at $z=e^{i\theta}$.

(4) Proof of Corollary 3. For |z| > 1, we can put

$$1/B(z) = \prod_{n=1}^{+\infty} b(1/z, \bar{a}_n).$$

By the convergence of $\sum_{n=1}^{+\infty} (1 - |a_n|), 1/B(z)$ is Blaschke products defined in |z| > 1. If $B(e^{i\theta})$ is absolutely convergent, then $1/B(e^{i\theta})$ is also absolutely convergent because of $1/B(e^{i\theta}) = \prod_{n=1}^{+\infty} (1 + c_n)^{-1} = \prod_{n=1}^{+\infty} (1 - c_n + O(c_n^2))$, C. TANAKA

where $c_n = c(e^{i\theta}, a_n)$. Hence, by Theorem 2 $\lim_{r \to i+0} 1/B(re^{i\theta}) = 1/B(e^{i\theta})$ so that, again by Theorem 2 $\lim_{r \to \pm 10} B(re^{i\theta}) = B(e^{i\theta})$.

So that, again by Theorem 2 $\lim_{r \to \pm 10} B(re^{i\theta}) = B(e^{i\theta}).$ Therefore, $B(re^{i\theta})$ is continuously defined for $0 \le r \le +\infty$ by the unique formula: $\prod_{n=1}^{+\infty} b(re^{i\theta}, a_n)$, provided that $\prod_{n=1}^{+\infty} b(e^{i\theta}, a_n)$ is absolutely convergent.

References

- [1] K. Knopp: Theory and Application of Infinite Series, London and Glasgow (1928).
- [2] C. Tanaka: On functions of class U, Ann. Acad. Sci. Fenn. I.A., 1-12 (1962).

412