124. On Homotopy Groups $\pi_{2n}(K_n^n, S^n)$

By Seiya SASAO

Department of Mathematics, Musashi Institute of Technology, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1963)

Let K_m^n be a CW-complex obtained by attaching an $(n+1)$ -cell
to the g sphere S_n^n by a map of degree $m: S_n^n \times S_n^n$ ($n > 2$), and V^{n+1} to the *n*-sphere S^n by a map of degree $m: S^n \rightarrow S^n$ ($n \ge 3$), and V^{n+1} to the *n*-sphere S^n by a map of degree $m: S^n \rightarrow S^n$ ($n \ge 3$), and let $[\alpha, \beta]_r$ denote relative Whitehead product of α and β . Since it is known that $\pi_r(K_m^n, S^n)$ is isomorphic to $\pi_r(S^{n+1})$ if $r<2n$, we have $\pi_{n+1}(K_m^n, S^n) \approx Z[\chi_{n+1}^m]$ where χ_{n+1}^m denotes the characteristic map of V^{n+1} in K_m^n . Now we shall prove the following

Theorem. If n is 3 or 7,

$$
\pi_{2n}(K_m^n, S^n) \approx Z_m[\chi_{n+1}^m, \epsilon_n]_r \oplus \pi_{2n}(S^{n+1}).
$$

If either *n* is even and not 4,8 or *n* is 4,8 and *m* is even,

 $\pi_{2n}(K_m^n, S^n) \approx Z[\chi_{n+1}^m, \ell_n]_r \oplus \pi_{2n}(S^{n+1}).$

If n is odd and not 3, 7,

$$
\pi_{2n}(K_{m}^{n},S^{n})\!=\!\chi_{n+1*}^{m}\pi_{2n}(V^{n+1},S^{n})^{\smile}Z_{2m}\!\left[\chi_{n+1}^{m},\,\iota_{n}\right]_{r}
$$

and $m[\chi_{n+1}^m, t_n]_r = \chi_{n+1}^m [\bar{t}_{n+1}, t_n]_r$. Especially we have

Corollary. Let o_m^n denote the order of $[\chi_{n+1}^m, \ell_n]_r$. Then

If n is 3, 7, o_m^n is m.

If *n* is odd and not 3, 7, o_m^n is $2m$.

If *n* is even, o_m^n is infinite.*)

The proof is given in several steps.

Let \overline{K}_m^n be a CW-complex such that $\overline{K}_m^n = K_m^{n} \vee V^{n+1}$ and $K_m^n \wedge V^{n+1}$ = S^n . Then we have an exact sequence of the triad $(\overline{K}_m^n, K_m^n, V^{n+1})$, $\rightarrow \pi_{2n+1}(\overline{K}_m^n, K_m^n, V^{n+1}) \stackrel{\partial_+}{\rightarrow} \pi_{2n}(K_m^n, S^n) \stackrel{j_*}{\rightarrow} \pi_{2n}(\overline{K}_m^n, V^{n+1}) \rightarrow$

By Theorem of Blaker and Massey Lemma ¹ follows from this sequence.

Lemma 1. There exists an exact sequence

 $0 \rightarrow \left\{\left[\chi_{n+1}^m, \chi_n\right]_r\right\} \stackrel{i}{\rightarrow} \pi_{2n}(K_n, S^n) \stackrel{p_*}{\rightarrow} \pi_{2n}(S^{n+1}) \rightarrow 0,$

where $\{\alpha\}$ denotes the cyclic group generated by α and p_* is the induced homomorphism by a map $p: K_{m}^{n} \rightarrow S^{n+1}$ such that $P(S^{n})$ is a base point and $P(K_m^n-S^n)$ is of degree 1.

We are now interested in the kernel of p_* . Let **P** be the space of paths in K_m^n starting from the base point, whose terminal points are contained in $Sⁿ$. Since p induces a fibering $\bar{p}: \mathbf{P}\rightarrow\Omega(S^{n+1})$ with a

^{*)} In [1], James obtained this result in a case that K_m^n is a subcomplex of a total space of an $Sⁿ$ -bundle over $Sⁿ⁺¹$.

558 [Vol. 39,

 $(2n-2)$ -connected fibre F, we have an exact sequence:

 $\pi_{2n}(\Omega(S^{n+1})) \stackrel{\partial}{\rightarrow} \pi_{2n-1}(F) \stackrel{i_*}{\rightarrow} \pi_{2n-1}(P) \stackrel{\overline{p}_*}{\rightarrow} \pi_{2n-1}(\Omega(S^{n+1})) \rightarrow 0.$ Next consider the commutative diagram

$$
\pi_{2n}(\mathcal{Q}(S^{n+1})) \overset{\delta}\mathop{\to} \pi_{2n-1}(F) \\ \downarrow_{H_1} \qquad \qquad \downarrow_{H_2} \\ H_{2n}(\mathcal{Q}(S^{n+1})) \underset{\tau}\mathop{\to} H_{2n-1}(F)
$$

where H_1 , H_2 are Hurewicz-homomorphisms and τ is the transgression operator.

By Theorem of Hurewicz $H₂$ is an isomorphism and $H₁$ is equivalent to Hopf invariant: $\pi_{2n+1}(S^{n+1}) \rightarrow Z$. Hence we have

Lemma 2. $P_*^{-1}(0)$ is isomorphic to $H_{2n-1}(F)/\tau H_1\pi_{2n}(\Omega(S^{n+1})),$ and if *n* is 3, 7, $H_{1}\pi_{2n}(\Omega(S^{n+1}))=H_{2n}(\Omega(S^{n+1})),$

if *n* is odd and not 3, 7, $H_1 \pi_{2n}(\Omega(S^{n+1})) = 2H_{2n}(\Omega(S^{n+1})),$

if *n* is even, $H_1 \pi_{2n}(\Omega(S^{n+1}))=0$.

On the other hand, by considering the fibering: $Q(K_m^n) \to \mathbf{P} \to S^n$ we have

Lemma 3. $H_{2n}(P, Z)=0$, $H_{2n-1}(P, Z)=Z_m$.

Then a part of the exact sequence of the fibering $\bar{p}: \mathbf{P}\rightarrow \Omega(\mathbf{S}^{n+1}),$ $H_{2n}(P) \to H_{2n}(\Omega(S^{n+1})) \to H_{2n-1}(F) \to H_{2n-1}(P) \to H_{2n-1}(\Omega^{n+1}),$ is transformed into an exact sequence:

$$
0{\rightarrow} Z{\rightarrow} H_{2n-1}(F){\rightarrow} Z_m{\rightarrow} 0.
$$

Thus we have the following result by use of the cyclicity of $p_*^{-1}(0)$: If *n* is even, $p_*^{-1}(0)$ is isomorphic to Z.

If *n* is 3, 7, $p_*^{-1}(0)$ is isomorphic to Z_m .

If *n* is odd and not 3, 7, $p_*^{-1}(0)$ is isomorphic to Z_{2m} .

The corollary is clear by these results. The proof of the Theorem is completed by Lemmas 1, 2, 3, and the following

Lemma 4. If either n is 3, 7 or n is even and not 4, 8 or n is 4, 8 and m is even, there exists a homomorphism $\rho: \pi_{2n}(S^{n+1}) \rightarrow$ $\pi_{2n}(K_m^n, S^n)$ and it holds that $P_{*} \circ \rho$ is equal to identity.

Reference

[1] I. M. James: Products on spheres, Mathematica, 6, 1-13 (1959).