124. On Homotopy Groups $\pi_{2n}(K_m^n, S^n)$

By Seiya SASAO

Department of Mathematics, Musashi Institute of Technology, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1963)

Let K_m^n be a *CW*-complex obtained by attaching an (n+1)-cell V^{n+1} to the *n*-sphere S^n by a map of degree $m: S^n \to S^n \ (n \ge 3)$, and let $[\alpha, \beta]_r$ denote relative Whitehead product of α and β . Since it is known that $\pi_r(K_m^n, S^n)$ is isomorphic to $\pi_r(S^{n+1})$ if r < 2n, we have $\pi_{n+1}(K_m^n, S^n) \approx Z[\chi_{n+1}^m]$ where χ_{n+1}^m denotes the characteristic map of V^{n+1} in K_m^n . Now we shall prove the following

Theorem. If n is 3 or 7,

$$\pi_{2n}(K_m^n, S^n) \approx Z_m[\chi_{n+1}^m, \iota_n]_r \oplus \pi_{2n}(S^{n+1}).$$

If either n is even and not 4,8 or n is 4,8 and m is even,

 $\pi_{2n}(K_m^n, S^n) \approx \mathbb{Z}[\chi_{n+1}^m, \iota_n]_r \oplus \pi_{2n}(S^{n+1}).$

If n is odd and not 3, 7,

$$\pi_{2n}(K_m^n, S^n) = \chi_{n+1*}^m \pi_{2n}(V^{n+1}, S^n) \subseteq Z_{2m}[\chi_{n+1}^m, \iota_n]_r$$

and $m[\chi_{n+1}^m, \iota_n]_r = \chi_{n+1*}^m[\bar{\iota}_{n+1}, \iota_n]_r$. Especially we have

Corollary. Let o_m^n denote the order of $[\chi_{n+1}^m, \epsilon_n]_r$. Then

If n is 3, 7, o_m^n is m.

If n is odd and not $3, 7, o_m^n$ is 2m.

If *n* is even, o_m^n is infinite.^{*)}

The proof is given in several steps.

Let \overline{K}_m^n be a *CW*-complex such that $\overline{K}_m^n = K_m^n \smile V^{n+1}$ and $K_m^n \frown V^{n+1} = S^n$. Then we have an exact sequence of the triad $(\overline{K}_m^n, K_m^n, V^{n+1}), \rightarrow \pi_{2n+1}(\overline{K}_m^n, K_m^n, V^{n+1}) \xrightarrow{\partial_*} \pi_{2n}(K_m^n, S^n) \xrightarrow{\partial_*} \pi_{2n}(\overline{K}_m^n, V^{n+1}) \rightarrow .$

By Theorem of Blaker and Massey Lemma 1 follows from this sequence.

Lemma 1. There exists an exact sequence

 $0 \rightarrow \{ [\chi_{n+1}^m, \iota_n]_r \} \xrightarrow{i} \pi_{2n} (K_n, S^n) \xrightarrow{p_*} \pi_{2n} (S^{n+1}) \rightarrow 0,$

where $\{\alpha\}$ denotes the cyclic group generated by α and p_* is the induced homomorphism by a map $p: K_m^n \to S^{n+1}$ such that $P(S^n)$ is a base point and $P(K_m^n - S^n)$ is of degree 1.

We are now interested in the kernel of p_* . Let **P** be the space of paths in K_m^n starting from the base point, whose terminal points are contained in S^n . Since p induces a fibering $\bar{p}: \mathbf{P} \rightarrow \Omega(S^{n+1})$ with a

^{*)} In [1], James obtained this result in a case that K_m^n is a subcomplex of a total space of an S^n -bundle over S^{n+1} .

S. SASAO

[Vol. 39,

(2n-2)-connected fibre F, we have an exact sequence:

 $\pi_{2n}(\mathcal{Q}(S^{n+1})) \xrightarrow{\vartheta} \pi_{2n-1}(F) \xrightarrow{i_*} \pi_{2n-1}(P) \xrightarrow{p_*} \pi_{2n-1}(\mathcal{Q}(S^{n+1})) \to 0.$ Next consider the commutative diagram

$$\begin{array}{c} \pi_{2n}(\Omega(S^{n+1})) \xrightarrow{\partial} \pi_{2n-1}(F) \\ \downarrow^{H_1} & \downarrow^{H_2} \\ H_{2n}(\Omega(S^{n+1})) \xrightarrow{} H_{2n-1}(F) \end{array}$$

where H_1 , H_2 are Hurewicz-homomorphisms and τ is the transgression operator.

By Theorem of Hurewicz H_2 is an isomorphism and H_1 is equivalent to Hopf invariant: $\pi_{2n+1}(S^{n+1}) \rightarrow Z$. Hence we have

Lemma 2. $P_*^{-1}(0)$ is isomorphic to $H_{2n-1}(F)/\tau H_1\pi_{2n}(\Omega(S^{n+1}))$, and if *n* is 3, 7, $H_1\pi_{2n}(\Omega(S^{n+1})) = H_{2n}(\Omega(S^{n+1}))$,

if n is odd and not 3, 7, $H_1\pi_{2n}(\Omega(S^{n+1}))=2H_{2n}(\Omega(S^{n+1}))$,

if *n* is even, $H_1\pi_{2n}(\Omega(S^{n+1}))=0$.

On the other hand, by considering the fibering: $\Omega(K_m^n) \rightarrow \mathbf{P} \rightarrow S^n$ we have

Lemma 3. $H_{2n}(\mathbf{P}, Z) = 0, H_{2n-1}(\mathbf{P}, Z) = Z_m$.

Then a part of the exact sequence of the fibering $\overline{p}: \mathbb{P} \to \mathcal{Q}(S^{n+1})$, $H_{2n}(\mathbb{P}) \to H_{2n}(\mathcal{Q}(S^{n+1})) \xrightarrow{\tau} H_{2n-1}(F) \to H_{2n-1}(\mathbb{P}) \to H_{2n-1}(\mathcal{Q}^{n+1}))$, is transformed into an exact sequence:

$$0 \rightarrow Z \rightarrow H_{2n-1}(F) \rightarrow Z_m \rightarrow 0.$$

Thus we have the following result by use of the cyclicity of $p_*^{-1}(0)$: If *n* is even, $p_*^{-1}(0)$ is isomorphic to *Z*.

If n is 3, 7, $p_*^{-1}(0)$ is isomorphic to Z_m .

If n is odd and not 3, 7, $p_*^{-1}(0)$ is isomorphic to Z_{2m} .

The corollary is clear by these results. The proof of the Theorem is completed by Lemmas 1, 2, 3, and the following

Lemma 4. If either n is 3, 7 or n is even and not 4, 8 or n is 4, 8 and m is even, there exists a homomorphism $\rho: \pi_{2n}(S^{n+1}) \rightarrow \pi_{2n}(K_m^n, S^n)$ and it holds that $P_* \circ \rho$ is equal to identity.

Reference

[1] I. M. James: Products on spheres, Mathematica, 6, 1-13 (1959).

558