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1. Introduction. Let X be a topological space. An open
covering 1 of X is said to be a star-refinement of another open
covering !3 of X if the covering {St(U, lI)]UeIi} is a refinement of
3 where St(A, 1) means the union of the sets U of 1 such that
AU4:. A sequence {Iin]n-l, 2,’"} of open coverings of Xis
said to be normal if / is a star-refinement of li for n-l, 2,....

We shall say.that a topological space X is an M-space if there
exists a normal sequence {ltn]n-1, 2, ...} of open coverings of X
satisfying the condition (.) below:

If a family ? consisting of a countable number of subsets of
X has the finite intersection property and contains as a member

(,)
a subset of St(xo, Itn) for every n and for some fixed point Xo
of X, then {AI A e ?l} = 0.

Metrizable spaces and countably compact spaces are clearly
M-spaces.

The notion of M-spaces was introduced and discussecl in 5.
Theorem 1. Let X be a topological space. In order that X be

metrizable it is necessary and sufficient that X be a paracompact
Hausdorff M-space and that the product space XX be perfectly
normal.

More precisely, we shall obtain the theorem below:
Theorem 1’. Let X be a topological space. In order that X

be metrizable it is necessary and sufficient that X be a paracompact
Hausdorff M-space and that the diagonal of the product space
XX be a G-set in XX.

It is easily seen that Theorem 1 is deduced from Theorem 1’.
Therefore, we have only to prove Theorem 1’; this will be done in 2.

A completely regular space X is said to be absolute G if it is
a G-set in every extension of it, that is, if X is a dense subset of
a completely regular space Y, then X is a G-set in Y.

It is well known that a metrizable space is absolute G if and
only if it is completely metrizable (cf. [1).

Z. Frolik has proved that a paracompact normal space which is
absolute G is an M-space. More generally, K. Morita (7-, [8)
has proved that a paracompact normal space which is G in a countably
compact space is an M-space.
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Combining these results and Theorem 1’ we have the following
theorem.

Theorem 2. Let X be a topological space. In order that X
be completely metrizable it is necessary and sufficient that X be a
paracompact Hausdorff space which is absolute G and that the
diagonal of the product space XX be a G-set in XX.

Let K be a CW-complex in the sense of J.H.C. Whitehead [11.
Then K is a paracompact Hausdorff space; this was proved in [_4.
And the product space KK is perfectly normal (cf. 6). But K
is not an M-space in general (cf. [6). If we apply Theorem 1 to
K, we can establish the result below:

Theorem 3. Let K be a CW-complex. Then the following con-
ditions on K are equivalent.

a K is abolute G.
( b K is locally compact.
c K is an M-space.
d K is metrizable.

( e K is completely metrizable.
Finally, in 4 we will discuss some remarks to the sufficient

conditions in Theorems 1 and 1’.
2. Proof of Theorem 1’. Since X is metrizable, XX is.

metrizable, we have only to prove the sufficiency of the conditions.
Let / be the diagonal of XX, that is, z/-{(x, x) lxeX}. Since

/ is a G-set in XX, there exists a countable collection {G In-l,
2,...} of open sets of XX such as Gn-l.

Let {itnln--1, 2,...} be a normal sequence of open coverings of
X which satisfies the condition (.) of M-space. Since each G contains
z/, for arbitrary point x of X we can choose a neighborhood U(x)
of x such that U(x) Un(x)G for n--1, 2, .... By the paracompact-
hess of X there exists a normal sequence {3 In--l, 2, ...} of locally
finite open coverings of X such that each is a refinement of the
covering {U(x) lxeX} of X.

Let us put n-- UN V] U[n, Vn} for n- 1, 2, ... Then the
sequence {nln-1, 2,...} has the following properties (1) and (2).
1 ) { In-l, 2, ...} satisfies the condition (.) of M-space.

(2) [J[W WIWen}G for n-l, 2, ....
Indeed, (1) follows from the fact that St(x, )St(x, IIn) is true for
each n and each point x of X, and (2) is an immediate consequence
of the constructions of and (n-1, 2,...).

Now we shall show that {St(x, n)l n--1, 2, is a neighborhood
basis at x ior every point x of X.

Suppose that it is contrary. Then there exist a point x of X
and a neighborhood N of x such that St(x, )--N is not empty for
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n--l, 2,.... Let x be a point of X such that
(3) St(x, n)--Nx for n-l, 2, ...,
and let us put A--{xlkn] for each n.

Since {.ln-1, 2,...] is a normal sequence, we can choose an
element Wn of .. such that

St(x, )"n+1) Wn for n-- 1, 2, ....
Hence, we have A/W+ and W/W. Therefore, we have

(4) An+W for n--l, 2, ....
Using (2) and (4) it is concluded that

{x} A)-- l ({x} A)l W, W)IG=I.
W=l =I =i =i

Therefore, we have

5 ) {x} ] An)/.
n--I

By the condition (.) of M-space we have

(6)
Consequently, we have to obtain, by (5) and (6),
(7) An--{x}.

On the other hand, from (3) we have to get the conclusion that

.An$x for each n. But this contradicts to (7).
Hence, it is shown that {St(x, )1 n-l, 2,...} is a neighbor-

hood basis at x for any point x of X. Therefore, X is metrizable
(cf. 9).

:. Proof of Theorem :. We have that (a) implies (c) for
paracompact normal spaces (cf. 3, 7, and 8).

According to Theorem 1 we can obtain that (c) implies (d).
Now we shall prove that (d) implies (b). For this purpose

assume (d). Then it is sufficient to show that K is a locally finite
complex meaning that each point x of K is an inner point of some
finite subcomplex of K (cf. _11). Contrary to this conclusion,
suppose that there is a point x0 of K at which K is not locally
finite. Then we can choose a sequence {xln-1, 2,-..} of points of
K and a sequence {K(e,)*)ln--1, 2,...} in K such that

1 p(Xo, x,)--, where p is the given metric function on K,(
and
2 x,C.g(el).. ."g(en_) X K(e,)

are satisfied for each n. Indeed, let {x, ..., Xn_} and {K(e), ...,
K(e_l)} satisfying (1) and (2) be chosen. Then, by the assumption

of x0, the set U(xo, --x]xeK, p(Xo, X)---- intersects infinitely
\ n/ ( n)

*) We shall use K(e,) to stand for the intersection of all the subcomplexes of K,
which contain en (cf. 11).



:No. 3 On Metrizability of M-Spaces 179

many closed cells of K. Let be one of the closel cells which

intersects U(xo,--.) and which is not contained in K(e)...K(e_),
and let x be a point of g(en)--g(e)"/... K(e,_). It is easily seen
that {x, ..., Xn} and {K(e), ..., K(e)} satisfy (1) and (2). Hence,
by induction, we can. obtain {Xnl n= 1, 2, .. and (K(e,)l n= 1, 2,
which are desirable.

Since K is a closure finite complex and has the weak topology,
{xln--1, 2,...} is a closel set of K. On the other hand, by (1) x0
is the limit point of {x[ n= 1, 2, }. This contradiction shows that
K is locally finite (cf. [10).

It is well known that (b) implies (a) for more general spaces.
It is clear that (e) implies (d).
Finally, we obtain that (a) implies (e) by Theorem 2.
Thus, the proof of Theorem 3 is completed.
4. Remarks to Theorem 1 and

1. The following example shows that Theorem 1’ is not true
without the assumption that / is a G-set in XX even though X
is perfectly normal.

Let X be the union of the top and bottom edges of the unit
square topologized by dictionary ordering. Then X is a non-metri-
zable, compact Hausdorff space which is separable and has a countable
base at each point (el. 2, Example 6.3). Moreover, it is easily
seen that X is perfectly normal.

2. Let X be a subspaee of fiN which is a union of integers
N and one point of N--N. Then X is a non-metrizable, a-compact
Hausdorff space (therefore, paraeompaet) space (el. _2, Example 6.2)
and XX is perfectly normal (el. 6, Corollary to Theorem 1).

This example shows that Theorem 1 is not true even if X is a
countable union of closed subsets each of which is an M-space instead
of the assumption that X is an M-space.
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