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39. On Metrizability of M-Spaces

By Akihiro OKUYAMA
Osaka Gakugei Daigaku
(Comm. by Kinjird KuNuG1, M.J.A., March 12, 1964)

§ 1. Introduction. Let X be a topological space. An open
covering Ul of X is said to be a star-refinement of another open
covering B of X if the covering {St(U, W)|Uecll} is a refinement of
B where St(A, 1) means the union of the sets U of U such that
ANUx¢. A sequence {U,|n=1,2,.--} of open coverings of X is
said to be mormal if U,,, is a star-refinement of U, for n=1,2, ---.

We shall say.that a topological space X is an M-space if there

exists a normal sequence {ll,|n=1,2, ---} of open coverings of X
satisfying the condition (*) below:
If a family U consisting of a countable number of subsets of
X has the finite intersection property and contains as a member
a subset of St(x,, U,) for every n and for some fixed point x,
of X, then N{A|AeU}=4.

Metrizable spaces and countably compact spaces are clearly
M-spaces.

The notion of M-spaces was introduced and discussed in [5].

Theorem 1. Let X be a topological space. In order that X be
metrizable it is mecessary and sufficient that X be a paracompact
Hausdorff M-space and that the product space XXX be perfectly
normal.

More precisely, we shall obtain the theorem below:

Theorem 1’. Let X be a topological space. In order that X
be metrizable it is mecessary and sufficient that X be a paracompact
Hausdorff M-space and that the diagonal 4 of the product space
XXX be a Gsset in XX X.

It is easily seen that Theorem 1 is deduced from Theorem 1’.
Therefore, we have only to prove Theorem 1’; this will be done in §2.

A completely regular space X is said to be absolute G, if it is
a G,-set in every extension of it, that is, if X is a dense subset of
a completely regular space Y, then X is a G;-set in Y.

It is well known that a metrizable space is absolute G, if and
only if it is completely metrizable (cf. [1]).

Z. Frolik has proved that a paracompact normal space which is
absolute G, is an M-space. More generally, K. Morita ([7], [8])
has proved that a paracompact normal space which is G;in a countably
compact space is an M-space.

(*)
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Combining these results and Theorem 1’ we have the following
theorem.

Theorem 2. Let X be a topological space. In order that X
be completely metrizable it is mecessary and sufficient that X be a
paracompact Hausdorff space which is absolute G, and that the
diagonal of the product space XXX be a Gs-set in XX X.

Let K be a CW-complex in the sense of J. H. C. Whitehead [11].
Then K is a paracompact Hausdorff space; this was proved in [4].
And the product space KX K is perfectly normal (cf. [6]). But K
is not an M-space in general (cf. {6]). If we apply Theorem 1 to
K, we can establish the result below:

Theorem 3. Let K be a CW-complex. Then the following con-
ditions on K are equivalent.

(a) K is abolute G,.

(b) K is locally compact.

(¢) K is an M-space.

(d) K is metrizable.

(e) K is completely metrizable.

Finally, in §4 we will discuss some remarks to the sufficient
conditions in Theorems 1 and 1'.

§ 2. Proof of Theorem 1'. Since X is metrizable, Xx X is
metrizable, we have only to prove the sufficiency of the conditions.

Let 4 be the diagonal of XXX, that is, 4={(x, ) | xe X}. Since
4 is a Gyset in XX X, there exists a countable collection {G,|n=1,

2, ---} of open sets of XX X such as ﬁGn:A.

Let {U,|n=1,2, ---} be a normal”séquence of open coverings of
X which satisfies the condition () of M-space. Since each G, contains
4, for arbitrary point x of X we can choose a neighborhood U,(x)
of & such that U,(x) X U,(x)CG, for n=1,2, ---. By the paracompact-
ness of X there exists a normal sequence {¥,|n=1, 2, ---} of locally
finite open coverings of X such that each ¥, is a refinement of the
covering {U,(x)|xe X} of X.

Let us put 8, ={UNV|Uell,, VeB,} for n=1, 2, ---. Then the
sequence {,|n=1,2, ---} has the following properties (1) and (2).
(1) {®,|n=1,2, .-} satisfies the condition () of M-space.

(2) U{WXW|WeR,}CG, for n=1,2, ---.

Indeed, (1) follows from the fact that St(x, 8,)St(x, U,) is true for
each n and each point « of X, and (2) is an immediate consequence
of the constructions of ¥, and W,(n=1,2, ---).

Now we shall show that {St(z, ®,)|n=1, 2, ---}is a neighborhood
basis at x for every point x of X.

Suppose that it is contrary. Then there exist a point z of X
and a neighborhood N of « such that St(x, B,)— N is not empty for
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n=1,2, ---, Let x, be a point of X such that
(3) St(x, 8,)— N>z, for n=1,2,:--,
and let us put A4,={xz,]k>n} for each n.

Since {W,|n=1,2, ...} is a normal sequence, we can choose an

element W, of B, such that
St(x, B, )CW, for n=1,2,---.

Hence, we have A4,,,CW,,, and W,,,CW,. Therefore, we have
(4) A, CW, for n=1,2, ---.
Using (2) and (4) it is concluded that

@Ix(QA)=N({=}x A)C (W, X W)C NG, =A4.
Therefore, we have
(5) {a} X (nf;lffn)czl-

By the condition (x) of M-space we have
(6) Na.xg.

Consequently, we have to obtain, by (5) and (6),
(7) ”Cll A, ={a}.

On the other hand, from (3) we have to get the conclusion that
A sz for each n. But this contradicts to (7).

Hence, it is shown that {St(x, ®,)| n=1,2, ---} is a neighbor-
hood basis at 2 for any point 2 of X. Therefore, X is metrizable
(cf. [9]).

§ 3. Proof of Theorem 3. We have that (a) implies (c) for
paracompact normal spaces (cf. [8], [7], and [8]).

According to Theorem 1 we can obtain that (¢) implies (d).

Now we shall prove that (d) implies (b). For this purpose
assume (d). Then it is sufficient to show that K is a locally finite
complex meaning that each point # of K is an inner point of some
finite subcomplex of K (ef. [11]). Contrary to this conclusion,
suppose that there is a point x, of K at which K is not locally
finite. Then we can choose a sequence {x,|n=1,2, ---} of points of
K and a sequence {K(e,)*|n=1,2, ---} in K such that
(1) p(x,, xn)<-11{, where o is the given metric function on K,

and
( 2 ) xn$K(el)u e VK(en—l)r xneK(en)
are satisfied for each #. Indeed, let {x,, --:, x,.,} and {K(e,), ---,

K(e,_,)} satisfying (1) and (2) be chosen. Then, by the assumption
of x, the set U(xo,7>={x]xeK, o(2,, w)<%—} intersects infinitely

*  We shall use K(e,) to stand for the intersection of all the subcomplexes of K,
which contain e, (ef. [11]).
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many closed cells of K. Let e, be one of the closed cells which
intersects U(xo, %> and which is not contained in K(e,)™~ - -~ K(e,_,),

and let xz, be a point of K(e,)—K(e,)™~---~K(e,.,). Itis easily seen
that {z,, ---, z,} and {K(e,), ---, K(e,)} satisfy (1) and (2). Hence,
by induction, we can obtain {z,|n=1,2, --:} and {K(e,)|n=1,2, ---}
which are desirable.

Since K is a closure finite complex and has the weak topology,
{x,|n=1,2, ---} is a closed set of K. On the other hand, by (1) ,
is the limit point of {z,/n=1, 2, ---}. This contradiction shows that
K is locally finite (cf. [10]).

It is well known that (b) implies (a) for more general spaces.

It is clear that (e) implies (d).

Finally, we obtain that (a) implies (e¢) by Theorem 2.

Thus, the proof of Theorem 3 is completed.

§4. Remarks to Theorem 1 and 1'.

1. The following example shows that Theorem 1’ is not true
without the assumption that 4 is a G;-set in XX X even though X
is perfectly normal.

Let X be the union of the top and bottom edges of the unit
square topologized by dictionary ordering. Then X is a non-metri-
zable, compact Hausdorff space which is separable and has a countable
base at each point (cf. [2], Example 6.3). Moreover, it is easily
seen that X is perfectly normal.

2. Let X be a subspace of BN which is a union of integers
N and one point of AN—N. Then X is a non-metrizable, o-compact
Hausdorff space (therefore, paracompact) space (cf. [2], Example 6.2)
and Xx X is perfectly normal (cf. [6], Corollary to Theorem 1).

This example shows that Theorem 1 is not true even if X is a
countable union of closed subsets each of which is an M-space instead
of the assumption that X is an M-space.
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