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69. On the Explanation of Observables and States

By Hideo YAMAGATA
(Comm. by Kinjir8 KUUG, M.J.A., May 9, 1964)

1o Introduction. In the previous paper [1, three kinds of
multiplications of operator valued functions are given. But the dif-
ferences among them are very delicate and important. Here, giving
the exact definitions of the testing functions and mollifiers, the dif-
ferences among these multiplications are discussed.

Since the multiplications used in axiomatic relativistic quantum
field theory is (2) in 1, the non local field appears [7. Here for
the purpose of the construction of local observables appearing in
Wightman function, the functional integration is used [-6.

On the other hand Von Neumann has constructed the direct
product space to represent the state vectors. But, between this and
true state vectors’ space there are following differences [2:

(1) True space of state vectors is not a Hilbert space but a
space consisting of vectors with unit length.

(2) In Von Neumann’s direct product space, the treatment of
the states with infinite phase amplitude is not necessarily faithful to
the treatment of the state vectors.

Hence, in this paper, by considering the formal meaning of vectors
contained in Von Neumann’s direct product space, the useful new
state is constructed by the Gelfand construction in 3. Further-
more, the true character of this constructed states is shown.

2. The relation among the three kinds of multiplications.
Let’s also use the most of the notations and definitions found in

In 1], the three kinds of multiplieations of the operator valued
functions huve been defined, and the diff.erenees among them also
have been investigated. Here, let’s give the deeper consideration to
the differences among them.

For these definitions in [1], the mollifiers, the testing functions
or both of them are always used.

Suppose that (x) is represented by the triplet E(x), {p(x)}, {f(x)}]
and the multiplications are defined in the set of these triplets. Here
(x) is an operator valued function, {p(x)} is the set of mollifiers
and {f(x)} is the set of testing functions.

For these definitions of multiplications {p(x)} and {f(x)} are not
necessarily used at the same time.

Namely in the multiplication of (1) in [1 (x) and {f(x)} are
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used. In (2) (in [1]) 9(x) and {p(x)} are used. And in (3) (in [1])
(x), [p(x)}, and If(x)} are used. To obtain the more precise and
delicate relations among these multiplications are our aim. Next we
show this. For this purpose the difference between the mollifiers
and the testing functions which is not yet clear is necessary. These
physical meanings are the following: if the mollifiers are essentially
used, this multiplication is constructed by using non local fields, and
if the testing functions are essentially used, this multiplication is
constructed by using local fields. In this paper, the following expla-
nation is used to show this difference between the mollifiers and the
set of testing functions [4], [5].

Definition 1. 1) Let’s consider the smooth function 9(x) with
the carrier not to be one point. If 9(x) is essentially used to con-
struct the product, or if it is used to construct the multiplicator
and the multiplicand, we say that (x) is a mollifier. 2) If suf-
ficiently many (x)’s are used to represent the product after the
construction of it, we say that (x)’s are testing functions.

Using Definition 1, let’s show the deeper and more delicate dif-
ference among the multiplications defined in [1].

A) The difference between the multiplication of (1) in [1] and
(2) in [1]: Since in the multiplication of (2)

9(f)-----9(f)’4(f) <9(x) X (x’), f(x) f(x’)}
the set of functions {f(x) f(x’)} does not contained sufficiently many
elements to represent the product 9(x)X (x’) and since f(x) is rather
used to construct the multiplicator and the multiplicant, it follows
that f(x)f(x’) is not used as the testing functions but used as
the set of the mollifiers.

In (1) h(x, x’) or f(x)g(x’) is evidently the set of testing function.
Then, there is a difference between the multiplication of (1) and of
(2).

(1) uses the local fields and (2) uses the non local field.
Afterwards, we will try to construct the operators corresponding

to expi(f) using the multiplication which has the characters of
both (1) and (3).

B) Between (2) in [1 and (3) in [1. Let’s consider the multipli-
cation of (3) defined in [1. Namely v(f)=[[(.p..p,,, f}} for
f(x)(D(RS)), where p,(x), p,,(x)(D(RS)), lim p,(x)= and lim p,,(x)=

-0

in (D’) and lim ]x]p,(x)=O and lim [x]p,,(x)=O uniformly (m is an
*--0

arbitrary fixed integer).
In this product, f is evidently a testing function, p,(x) and p,(x’)

has the characters of mollifier, but from the conditions lim p,(x)=
*-0

and lim p,,(x)=, the carrier of the sequence {p,(x)} and the carrier
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of the sequence {p,,(x)} are essentially one point.
Then [p,(x)} and {p,(x)} are not simply the mollifier, but the

tool for the construction of the sequences such that each of them
approach to (x) and (x).

Hence {p(x)} etc. are essentially different from f used in the
multiplication of (2).

C) Between (3) in [1 and (1) in [1. We can rewrite the multipli-
cation of (3) defined in [1 to the form v(f)=[{(((2)(2’),
(-x) ,,(’-x)}, f(x)}}.

But the conditions limp,(x)=, and limp,,(x)=, construct the
0 tO

difference between (3) and (1).
Namely p,(2-- x) p,(2’-- x) is not essentially a testing function

depending to x but is used to construct the sequence converging to
() (2), because the carrier of {p(2--x) po,(2’--x)} is essentially
one point for fixed x.

Now let’s construct the local observable appearing in Wightman
function, using the conception of the multiplication of (1) and (3) [1.

Let’s construct the formal infinite direct product of C(xn). And
let Hn @C(Xn) denote this space. Let A(I-In @C(X,n) denote the linear
aggregate of this space. We use A(n(R)CF(xn)) because [In (R)C(x)
is too small to use.

Definition 2. Let (exp (i).())=0I-(R)(0(k)) denote the set
of sequences {(ll...+il...+ii/2l...+....
f(x, x.,. )}
c:(x)).

Here, the sequence {f(x, x,...)} satisfies the following conditions:
a) f(x, x.,. can be decomposed in the form fn(X, X," ")=
c2(x)(x) e(x)

b) E=C-, dx
c) U2"=1 {carrier ((?(x))} tend to one point x--0 for any k as n->

oo. Namely [{(11... +i l +i i/2 l +...
ymn Dmn(Xl) dxl Xc,’(x)(x.) .)],=0. [i(R) (0(k))} ,=

./Z(x) axe... +E__f(,(x) o(x))f.(.)axe...x
xi=O

Using this definition, the local observables can be defined. This
situation is similar to one such that non linear equation can be
linearlied using he functional integration. To eonstruet he states
which is not contained in the domain of free hamiltonian, we have
used the above {f(x, x.,...)} instead of the testing functions. For
the states constructed from the above local observable, we give two
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explanation; one is that according to Von Neumann, and the other is
that according to the following Definition 3. The use of the sequence
{f(x, x.,...)} is to give the rule of conditional convergence. Namely,,.... really contains the infinitely many {f(x, x.,...)}.
And it corresponds to the following cut-off:

2lira (1) (2) ($)i(x) i(x)/2 i(x)/3 X ,=C,(x),(x),(x)
:iCmn(i(xl),9(xx)). (ig(x)/2,9(x))...

(2) X==C3-(i39(xx).9(x)).3 x(i39(x)/2.9( ))....
M (1) .392(x3...-l(k, k, .).And lim =C39,(x) o-’()x

Then the conditional convergence in 3 and in the following 3 can
be represented by using this form.

3. The construction of the states. We denote by (nk) the
eigenfunction with norm 1 corresponding to n particle with momenta k.

Let a(k) denote the unbounded operator a(k) for h-0, and denote
a* (k) for h 1.

Let b(a(k)) denote the coefficient of a(k) in 9(f).
Let exp (iOn(k)) denote the complex number b(a(k))/]b(a(k)),

whose absolute value is 1.
Definition 3. We denote by [exp (i9(f)).k@(n) the formal

sum of the following state vectors:
(1) {H=(b(a(k))a(k)dk)/j}.Hk@(nk) where h--0 or 1.

( 2 i) Let a denote the set of all possible operators a k.dk/j
such that the state @(nk) can be constructed from k@(Ok)
by using the creation and annihilation operators in this infinite
product.

ii) Let aN denote the set of all operators f={a(k)dk/j} con-

structed from H?=x{a(k)dk/j} in a.

iii) Let Cn(k), Hf={a(k)dk/j}) denote the complex number

H{ b(a(k)) /J} ]] Hf={a(k)H (0k)

If C(n(k), a(k))--lim Cn(k), Hf={a(k)dk/j}) is definite and non-

zero, we say that the state C(n(k), O(k))@e*OCkq(nk) is also the

component of the state [exp (ig(f))’@(Ok), where O(k) is the

sum of amplitudes related to the momenta k. The above Definition

3 gives the new explanation to some states with infinite phase ampli-

tude which cannot be represented by exp (ig(f))’k@(Ok) found in

Using Definition 2 corresponding to Definition 3, let’s construct

the state H@e(l) which is equal to 0 in Von Neumann’s infinite

direct product space.
Example. Let’s enclose the considered system in a box of finite

volume V. Choose the generalized function J as the function f.
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Then we can obtain the following formula formally,
exp @(f)--,=o(1/n !)i-k=(,,.,..p(a (k)+a(k))

for non negative integer k, k., k. Using the conditional convergence
defined in [3 or the corresponding selection of the sequence {fn(X,
X.,’’’)}, the component

Hke-(lk) of (exp (i)*())x=0Hk(0k)
is obtained by the explanation in Definition 3.

Here we show this conditional convergence defined in 3 once
more.

Ordering the set of triplet (k,k,k,), construct the sequence
(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (2, 0, 0).... Using the first m terms
of the above sequence, construct the m sequences. Operate to the
state @(0) m creation operators ia+(k) corresponding to the
terms of the above some sequence. Since m/m=l, it will be seen

that the sum of all this states becomes to @e(l) as m tend

The inner product between those states are the following:

This inner product is not always number but formal infinite product
of complex numbers. We only require that for fixed k the finite
inner product <,> is defined. Here, the linearlity has only the
probabilistic meaning.

At last, let’s show the exact meaning of the component
HT={b(a(k)).a(k)dk/j} appearing in Definition of 3] and in Defini-
tion 3 of this paper.

Let’s decompose (f=) in the following form:

where limf,=& On the other hand, we can represent (f) by the

following form e(L)=(C(k)a+(k)+C(k)a(k)), where C(k)-O
Cn(k)-O for sufficiently large ]k] and lim C(k)-I for all k.

Since ]le(m)l]lC(k)l I]ll for all states , then the
spectral measure dE<,)() is distributed in the domain ]] g]C(k).

Since limg]C(k)]=, it is obvious that ($) is related to

=.
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