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The set of all mappings p, defined by ap=a, is called the
regular representation of S. The purpose of this note is to determine
all semigroups whose regular representation is a group.

A left group is a semigroup with a right identity and with left
solvability. In 1 Clifford proved that any left group is a direct
product GL of a group G and a left zero semigroup L. See [-3 for
other equivalent definitions.

Lemma 1. If T is the regular representation of a left group
GxL, then T_G.

Lemma 2. If S is a semigroup and if T is its regular re-
presentation, then T is a permutation group if and only if S is a

left group.
Lemma 3. If T is a permutation group on a set S, then there

exists a binary operation on S such that S is a semigroup with T
as its regular representation if and only if T satisfies the condition
that, for all a, e T and for all x e S, x=x implies that

To demonstrate the binary operation in Lemma 3, we let {S} be
the collection of transitivity components of T. We then select from
each S an element e. Now, for each x e S there exists, by assump-
tion, a unique element e T such that e-x. Denoting this by
x, we get a mapping, for each i, from S into T. The operation
x.y=x(yqg) if y e S, makes S a semigroup with T as its regular
representation.

If T is a transformation semigroup on a set S, let S* be the
set of all elements of S which are in the range of some member of
T, and let T* be the set of all elements of T restricted to S*.

Lemma 4. If T is a transformatio group on a set S, thn T*
is a permutation group on S*.

Theorem 1. If T is a transformation group on a set S, then
there exists a binary operation on S such that S is a semigroup
with T as its regular representation if and only if T satisfies the

1) This paper was presented by the author at the 1964 Summer Meeting of
the American Mathematical Society at Amherst. The detailed proof will appear
elsewhere.
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condition that, for all , e T and for all x e S, xa=x implies=
Definition. Let S be a semigroup. For each x e S, let A be a set

containing x such that the sets A, x e S, are pairwise disjoint. Let
S’=U{A:xeS}, and define a.b=xy where aeA and beA. The
semigroup (S’, .) is called an inflation of S.

Theorem 2. If S is a semigroup and if T is its regular
presentation, then T is a group if and only if S is an inflation
of a left group.

In the proofs of Theorems 1 and 2 we use Lemma 4 so that we.
may apply Lemmas 2 and 3 respectively.

Corollary. If S is a semigroup such that both its regular re-
presentation and its anti-representation 2, p.9 are groups, then
S is an inflation of a group.

Theorem 3. If S is a semigroup such that its regular re-
presentation T is a group, then T is the maximal group homo-
morphic image of S.

The author would like to thank Professor Takayuki Tamura for
directing this research.

Addendum: Theorem 2 also can be proved by using the concept
"M-inversive" due to Yamada (see [Kodai Math. Sem. Rep., 7(1955)
49-52 or [1, p.98). Furthermore the author has obtained that S is
M-inversive if and only if T is a right group.
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