31. Approximative Dimension of a Space of Analytic Functions

By Isao Miyazaki

Department of Mathematics, Saitama University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

Banach [1] introduced the concept of linear dimension into the theory of topological linear spaces. Extending the idea, Kolmogorov [2] defined the approximative dimension with a view to more definite comparison between dimensions of certain linear spaces. Besides the definition he gave some of its examples in the note [2]. Among them we find a formula determining the approximative dimension for the space A_{σ}^{s} of regular analytic functions defined on a domain G of s complex variables, with which the comparison of dimensions for different s leads to a reasonable result. The proof is not given, only it is mentioned that the formula can be derived by the same method as is used for the evaluation of ε -entropies. But A_{σ}^{s} with the topology considered here being countably normed, i.e. not having such a simple metric as is usually taken to define ε -entropies, the circumstances are somewhat more complicated, the proof of the formula seems by no means trivial.

The purpose of the present paper is to give a complete proof to the formula in the simplest case where s=1 and $G=\{z: |z|<1\}$. In the proof we use some results in the theory of ε -entropies [3]. For general s, because those results are also available, the proof given here remains unchanged in essentials, as long as G is suitably simple so that it can be reduced to a polycylinder.

DEFINITION (Kolmogorov). To every topological linear space Ewe assign such a family $\mathcal{Q}(E)$ of functions $\varphi(\varepsilon)$ defined for $\varepsilon > 0$ as follows. A function $\varphi(\varepsilon)$ belongs to $\mathcal{Q}(E)$ if and only if for every compact $K \subset E$ and every open neighborhood U of zero in E there exists a positive number ε_0 such that, when $\varepsilon < \varepsilon_0$, we can find $N \leq \varphi(\varepsilon)$ points x_1, \dots, x_N in E forming a ε -net of K relative to U, i.e.

$$K \subset \bigcup_{i=1}^{N} (x_i + \varepsilon U).$$

The family $\Phi(E)$ is called the approximative dimension of $E^{(1)}$.

Now let A_{σ} be the space of regular functions on the open disk

¹⁾ In Kolmogorov's original definition, the approximative dimension $d_a(E)$ of E is not the family $\Phi(E)$ itself, but defined by comparison: for two topological linear spaces E and E', $d_a(E) \leq d_a(E')$ if and only if $\Phi(E) \supset \Phi(E')$.

 $G = \{z: |z| < 1\}$ with the topology of uniform convergence on every compact subset of G. We shall write also $r_n = 1 - \frac{1}{n}$, $G_n = \{z: |z| < r_n\}$ and $\overline{G}_n = \{z: |z| \le r_n\}$ for $n = 2, 3, \cdots$. We can take as a local base of $A_{\mathcal{G}}$ the family of neighborhoods $\{\varepsilon_{\nu}U_n: \nu = 1, 2, \cdots; n = 2, 3, \cdots\}$, where $\varepsilon_{\nu} \downarrow 0$ and

$$U_n = \{ f(z) \in A_{\mathcal{G}} : \sup_{z \in \bar{\mathcal{G}}_n} | f(z) | < 1 \}.$$

THEOREM (Kolmogorov). A function $\varphi(\varepsilon)$ for $\varepsilon > 0$ belongs to $\Phi(A_{G})$ if and only if

$$\lim_{\varepsilon\to 0}\frac{\log \varphi(\varepsilon)}{\left(\log\frac{1}{\varepsilon}\right)^2}=\infty.$$

Proof. Suppose that we are given an arbitrary compact subset $K \subset A_{\sigma}$ and a neighborhood U of zero in A_{σ} . We can choose a sufficiently small neighborhood $\varepsilon_{\nu}U_n$ from among elements of the local base taken above such that its closure in A_{σ}

 $(1) \qquad \qquad \varepsilon_{\nu}\bar{U}_{n} = \{f(z) \in A_{\sigma}: \sup_{z \in \bar{G}_{n}} |f(z)| \leq \varepsilon_{\nu}\} \subset U.$

Take an integer
$$m > n$$
, and put
(2) $\sup_{\substack{f \in K \ z \in \overline{d}_m}} |f(z)| = C$

the left hand side of (2) being finite because of compactness of K.

Let $A_{\sigma_m}^{\overline{g}_n}(C)$ be the space of regular functions f(z) on G_m not exceeding C by moduli with the uniform metric on $\overline{G}_n \subset G_m$, i.e.

$$A_{\mathcal{G}_m}^{\overline{\mathcal{G}}_n}(C) = \{ \text{regular } f(z) \text{ on } G_m : \sup_{z \in \mathcal{G}_m} |f(z)| \leq C \},$$

$$\rho_n(f_1, f_2) = \sup_{z \in \overline{\mathcal{G}}_n} |f_1(z) - f_2(z)| \text{ for } f_1, f_2 \in A_{\mathcal{G}_m}^{\overline{\mathcal{G}}_n}(C).$$

If we introduce the same metric ρ_n (i.e. the uniform metric on \overline{G}_n) into the spaces R and \widetilde{A} of all regular functions on G_m and Grespectively ($A_{\mathcal{G}}$ and \widetilde{A} are the same as point set, but with different topologies), $A_{\mathcal{G}_m}^{\overline{\mathcal{G}}_n}(C)$ and \widetilde{A} are subspaces of R, and it holds

$$K \subset \widetilde{A} \cap A_{\mathfrak{G}_m}^{\overline{\mathfrak{G}}_n}(C) \subset R.$$

The set K considered with the metric ρ_n as a subspace of R will be denoted for a while by the same K without any confusion. \overline{U}_n is the unit sphere of the space \widetilde{A} .

Now, given a positive number ε , we consider the most economical $\varepsilon\varepsilon_{\nu}$ -net $\{x_1, \dots, x_N\}$ of K in the metric space \widetilde{A} , i.e. $x_1, \dots, x_N \in \widetilde{A}$ and (3) $K \subset \bigcup_{i=1}^N (x_i + \varepsilon\varepsilon_{\nu} \overline{U}_n),$

the number N of points being minimal under the above condition. By definition, the logarithm of N to the base 2 is the ε_{ν} -entropy of the set K relative to \tilde{A} :

$$\log_2 N = H_{\varepsilon_{\varepsilon_n}}^{\widetilde{A}}(K).$$

We introduce here some more quantities of this kind: $\varepsilon \varepsilon_{\nu}$ -capacities $C_{\varepsilon \varepsilon_{\nu}}(K)$, $C_{\varepsilon \varepsilon_{\nu}}(A_{\overline{g}_{m}}^{\overline{g}_{n}}(C))$, and $\varepsilon \varepsilon_{\nu}$ -entropy $H_{\varepsilon \varepsilon_{\nu}}(A_{\overline{g}_{m}}^{\overline{g}_{n}}(C))$. By elementary theorems in the theory of ε -entropies (cf. [3], §1), and because $K \subset A_{\overline{g}_{m}}^{\overline{g}_{n}}(C)$, we have

For the space $A_{\sigma_m}^{\sigma_n}(C)$, the asymptotic behavior of its ε -entropy and ε -capacity is known (cf. [3], §7), that is, for $\varepsilon \to 0$

$$H_{\bullet}(A_{d_m}^{\overline{g}_n}(C)) \sim C_{\bullet}(A_{d_m}^{\overline{g}_n}(C)) \sim \frac{\left(\log_2 \frac{1}{\varepsilon}\right)^2}{\log_2 \frac{r_m}{r_n}}$$

We see that the last side of inequalities (5) has the same order of infinity for $\varepsilon \rightarrow 0$:

(6)
$$C_{\varepsilon\varepsilon_{\gamma}}(A_{\sigma_{m}}^{\overline{\sigma}_{n}}(C)) \sim \frac{\left(\log_{2}\frac{1}{\varepsilon\varepsilon_{\gamma}}\right)^{2}}{\log_{2}\frac{r_{m}}{r_{n}}} \sim \frac{\left(\log_{2}\frac{1}{\varepsilon}\right)^{2}}{\log_{2}\frac{r_{m}}{r_{n}}}$$

Now suppose a function $\varphi(\varepsilon)$ of $\varepsilon > 0$ satisfies the condition

(7)
$$\lim_{\varepsilon \to 0} \frac{\log_2 \varphi(\varepsilon)}{\left(\log_2 \frac{1}{\varepsilon}\right)^2} = \infty.$$

Then for sufficiently small $\varepsilon < \varepsilon_0$ we have from (4), (5), (6), and (7) $\log_2 \varphi(\varepsilon) > C_{\varepsilon\varepsilon_y}(A_{a_m}^{\overline{q}_n}(C)) \ge \log_2 N$,

while from (1) and (3)

$$K\subset \bigcup_{i=1}^{N}(x_i+\varepsilon U).$$

Thus we found a ε -net $\{x_1, \dots, x_N\} \subset A_{\sigma}$ of K relative to U, where the number of points $N < \varphi(\varepsilon)$ for $\varepsilon < \varepsilon_0$. We conclude that $\varphi(\varepsilon) \in \mathcal{Q}(A_{\sigma})$.

Conversely, let $\varphi(\varepsilon)$ be an arbitrary element of the family $\Phi(A_{\sigma})$. Take a compact subset

$$K = \{ \text{regular } f(z) \text{ on } G: \sup_{z \in \mathcal{G}} | f(z) | \leq C \}$$

and a neighborhood $U=U_n$ in A_{σ} for some fixed C>0 and some $n \ge 2$. Consider the most economical ε -net $\{x_1, \dots, x_N\} \subset A_{\sigma}$ of K relative to U, i.e.

$$(8) \qquad \qquad K \subset \bigcup_{i=1}^{N} (x_i + \varepsilon U),$$

the number N being minimal under the condition. Now we introduce into the set K the uniform metric ρ_n on \overline{G}_n , and denote the obtained space by $A_{\mathcal{G}^n}^{\tilde{\mathcal{G}}_n}(C)$ in accordance with the previous notation. Let \widetilde{A} denote again the space of the set $A_{\mathcal{G}}$ with the metric ρ_n , and $\overline{U}_n \supset U$ its unit sphere. From (8) surely I. MIYAZAKI

[Vol. 41,

$$A^{ar{d}}_{G^n}\!(C) \subset igcup_{i=1}^N (x_i \! + \! arepsilon ar{U}_n),$$

hence, by the definition of relative ε -entropy,

$$(9) \qquad \qquad \log_2 N \ge H_{\varepsilon}^{\widetilde{A}}(A_{\mathcal{G}}^{\overline{\mathcal{G}}_n}(C)).$$

Simple facts about *e*-entropies as cited above lead to

(10)
$$H^{\widetilde{a}}_{\varepsilon}(A^{\overline{a}}_{\sigma}(C)) \ge H_{\varepsilon}(A^{\overline{a}}_{\sigma}(C)) \sim \frac{\left(\log_{2} \frac{1}{\varepsilon}\right)^{2}}{\log_{2} \frac{1}{r_{n}}} \text{ for } \varepsilon \to 0.$$

Because $\varphi(\varepsilon) \in \mathcal{Q}(A_{\sigma})$, there exists a positive number ε_0 such that if $\varepsilon < \varepsilon_0$, $N \leq \varphi(\varepsilon)$. This means that, whenever $\varepsilon < \varepsilon_0$, it holds

(11)
$$\frac{\log_2 \varphi(\varepsilon)}{\left(\log_2 \frac{1}{\varepsilon}\right)^2} \ge \frac{\log_2 N}{\left(\log_2 \frac{1}{\varepsilon}\right)^2} \ge \frac{H_{\varepsilon}(A_{\sigma}^{\overline{\sigma}_n}(C))}{\left(\log_2 \frac{1}{\varepsilon}\right)^2}.$$

From (10) the last side of inequalities (11) tends to the limit $1/\log_2 \frac{1}{r_n}$ when $\varepsilon \to 0$. Meanwhile, *n* being arbitrary, $r_n = 1 - \frac{1}{n}$ can be taken as close to unity as we desire, so that the limit $1/\log_2 \frac{1}{r_n}$ can be arbitrarily large. This fact with the inequalities (11) leads to the result

$$\lim_{\varepsilon \to 0} \frac{\log_2 \varphi(\varepsilon)}{\left(\log_2 \frac{1}{\varepsilon}\right)^2} = \cdot \infty$$

References

- [1] Banach, S.: Théorie des Opérations Linéaires. Warsaw (1932).
- [2] Kolmogorov, A. N.: On linear dimension of topological vector spaces (in Russian). Dokl. Akad. Nauk SSSR, 120 (2), 239-241 (1958).
- [3] Kolmogorov, A. N., and Tihomirov, V. M.: ε-entropy and ε-capacity of sets in functional spaces (in Russian). Uspehi Mat. Nauk, 14 (2), 3-86 (1959). (1959).