26. The Relation between ($\mathbf{N}, \mathrm{p}_{n}$) and ($\overline{\mathbf{N}}, p_{n}$) Summability

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1965)
We suppose, throughout this note, that

$$
\begin{aligned}
& p_{n}>0, \quad \sum_{n=0}^{\infty} p_{n}=\infty, \\
& P_{n}=p_{0}+p_{1}+\cdots+p_{n}, \quad n=0,1, \cdots .
\end{aligned}
$$

The Nörlund transformation (N, p_{n}) is defined as transforming the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{t_{n}\right\}$ by means of the equation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} . \tag{1}
\end{equation*}
$$

As is well known, this transformation is regular if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{n}}{P_{n}}=0 . \tag{2}
\end{equation*}
$$

See Hardy [1], p. 64.
The discontinuous Riesz transformation (\bar{N}, p_{n}) is defined as transforming the sequence $\left\{s_{n}\right\}$ into the sequence $\left\{u_{n}\right\}$ by means of the equation

$$
\begin{equation*}
u_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{\nu} s_{\nu} . \tag{3}
\end{equation*}
$$

This transformation is regular (see Hardy [1], p. 57).
As is easily seen, the transformations (N, p_{n}) and (\bar{N}, p_{n}) take symmetric forms, hence we can expect the close relation between them. We shall prove here the following

Theorem 1. Suppose that

$$
\begin{equation*}
\left\{p_{n}\right\} \text { is non-increasing, } \tag{4}
\end{equation*}
$$

and that

$$
\begin{equation*}
p_{n} \geq \sigma>0, \quad n=0,1, \cdots . \tag{5}
\end{equation*}
$$

Then (\bar{N}, p_{n}) implies*) $\left(N, p_{n}\right)$.
Proof. From (3) we have

$$
s_{n}=\frac{P_{n} u_{n}-P_{n-1} u_{n-1}}{p_{n}}, \quad n=0,1, \cdots,
$$

with $P_{-1}=u_{-1}=0$. Hence, from (1),

[^0]\[

$$
\begin{align*}
t_{n} & =\frac{1}{P_{n}} \sum_{\nu=0}^{n}\left\{\frac{p_{n-\nu}}{p_{\nu}} P_{\nu} u_{\nu}-\frac{p_{n-\nu}}{p_{\nu}} P_{\nu-1} u_{\nu-1}\right\} \tag{6}\\
& =\frac{1}{P_{n}} \sum_{\nu=0}^{n-1}\left\{\frac{p_{n-\nu}}{p_{\nu}}-\frac{p_{n-\nu-1}}{p_{\nu+1}}\right\} P_{\nu} u_{\nu}+\frac{p_{0}}{p_{n}} u_{n} \\
& =\sum_{\nu=0}^{n} a_{n \nu} u_{\nu}
\end{align*}
$$
\]

where

$$
\begin{equation*}
a_{n \nu}=\frac{P_{\nu}}{P_{n}}\left\{\frac{p_{n-\nu}}{p_{\nu}}-\frac{p_{n-\nu-1}}{p_{\nu+1}}\right\} \quad \text { for } \quad \nu=0,1, \cdots n, \tag{7}
\end{equation*}
$$

with $p_{-1}=0$.
Now if $s_{\nu}=1$ for all ν, then $t_{n}=1, u_{n}=1$ for all n. Hence $\sum_{\nu=0}^{n} a_{n \nu}=1$ for all n. Also, since $P_{n} \rightarrow \infty$ and $\left\{p_{n}\right\}$ is bounded, it is clear that $a_{n \nu} \rightarrow 0$ as $n \rightarrow \infty$ for any fixed ν. Hence a necessary and sufficient condition for the transformation (6) to be regular is that

$$
\sum_{\nu=0}^{n}\left|a_{n \nu}\right|=O(1)
$$

Since, from (4),

$$
\frac{p_{n}}{p_{0}} \leq \frac{p_{n-1}}{p_{1}} \leq \cdots \leq \frac{p_{1}}{p_{n-1}} \leq \frac{p_{0}}{p_{n}}
$$

we have

$$
\begin{aligned}
& \sum_{\nu=0}^{n}\left|a_{n \nu}\right|=-\sum_{\nu=0}^{n-1} a_{n \nu}+\frac{p_{0}}{p_{n}} \\
&=-\frac{1}{P_{n}} \sum_{\nu=0}^{n-1} P_{\nu}\left\{\frac{p_{n-\nu}}{p_{\nu}}-\frac{p_{n-\nu-1}}{p_{\nu+1}}\right\}+\frac{p_{0}}{p_{n}} \\
&=-\frac{1}{P_{n}}\left\{P_{0} \frac{p_{n}}{p_{0}}-P_{n-1} \frac{p_{0}}{p_{n}}+\right. \\
&\left.\quad+\sum_{\nu=1}^{n-1} \frac{p_{n-\nu}}{p_{\nu}}\left(P_{\nu}-P_{\nu-1}\right)\right\}+\frac{p_{0}}{p_{n}} \\
&=-\frac{1}{P_{n}}\left(p_{n}+p_{n-1}+\cdots+p_{1}\right)+\frac{P_{n-1}}{P_{n}} \frac{p_{0}}{p_{n}}+\frac{p_{0}}{p_{n}} \\
& \leq \frac{2 p_{0}}{\sigma}
\end{aligned}
$$

from (7) and (5). This proves our assertion.
From the proof of our theorem, we obtain the following Corollary. If

$$
\inf _{n} p_{n}=0
$$

then $\left(\bar{N}, p_{n}\right)$ does not imply $\left(N, p_{n}\right)$.
Next we shall prove the following
Theorem 2. Suppose that
(8)
$\left\{p_{n}\right\}$ is non-decreasing,
and that
(2)

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{P_{n}}=0
$$

Then (\bar{N}, p_{n}) implies $\left(N, p_{n}\right)$.
Proof. As in the proof of Theorem 1, we get $\sum_{\nu=0}^{n} a_{n \nu}=1$ for all
n. Next we see easily, from (2), that $a_{n \nu} \rightarrow 0$ as $n \rightarrow \infty$ for any fixed
ν. Finally we have, from (8),

$$
\frac{p_{n}}{p_{0}} \geq \frac{p_{n-1}}{p_{1}} \geq \cdots \geq \frac{p_{1}}{p_{n-1}} \geq \frac{p_{0}}{p_{n}}
$$

hence

$$
\begin{aligned}
\sum_{\nu=0}^{n}\left|a_{n \nu}\right| & =\sum_{\nu=0}^{n} a_{n \nu} \\
& =\frac{1}{P_{n}}\left(p_{n}+p_{n-1}+\cdots+p_{1}\right)-\frac{P_{n-1}}{P_{n}} \frac{p_{0}}{p_{n}}+\frac{p_{0}}{p_{n}} \\
& \leq 2 .
\end{aligned}
$$

Collecting the above estimations we obtain the desired conclusion.

Reference

[1] G. H. Hardy: Divergent Series. Oxford (1949).

[^0]: *) Given two summability methods A, B, we say that A implies B if any sequence summable A is summable B to the same sum.

