49. On a Criterion of Quasi-boundedness of Positive Harmonic Functions

By Mitsuru NAKAI

Mathematical Institute, Nagoya University (Comm. by Kinjirô KUNUGI, M.J.A. March 12, 1965)

1. For a positive¹ harmonic function u on a Riemann surface R, we denote by $\mathfrak{B}u$ the positive harmonic function on R defined by $(\mathfrak{B}u)(p) = \sup(v(p); u \ge v, v \in HB(R))$

for p in R. After Parreau we say that u is quasi-bounded if $\mathfrak{B}u=u$. In this note we shall give a condition for a positive harmonic function to be quasi-bounded by using the rate of diminishing of harmonic measures of level curves of the harmonic function. For the aim, we set

$$\mathfrak{L}(u; a) = (p \in R; u(p) = a)$$

for any positive number a. This is the *a-level curve* of u. For any closed subset F of R, we denote

 $\omega(F; p) = \inf s(p),$

where s runs over all positive superharmonic functions on R such that $s \ge 1$ on F. This is the harmonic measure of F relative to R calculated at p. Now fix a point p in R. It is clear that $\omega(\mathfrak{L}(u; a); p) = O(1/a)$ for $a \to \infty$. If u is bounded, then $\omega(\mathfrak{L}(u; a); p) = 0$ for $a > \sup u$. This suggests us that $\omega(\mathfrak{L}(u; a); p) = o(1/a)$ might be a condition for u to be quasi-bounded. This is really the case and we shall prove

Theorem. For a positive harmonic function u on a Riemann surface R, the following three conditions are mutually equivalent:

(1) u is quasi-bounded on R;

(2) $\lim_{a\to\infty} a\omega(\mathfrak{L}(u;a);p)=0$ for some (and hence for any) point p in R;

(3) $\liminf_{a\to\infty} a\omega(\mathfrak{L}(u;a);p)=0$ for some (and hence for any) point p in R.

2. It is clear that the condition (2) implies the condition (3). Hence we have only to show the implications $(1)\rightarrow(2)$ and $(3)\rightarrow(1)$. In each case, we may assume that u is unbounded on R and $R \notin O_{HP}$.

Proof of the implication $(1)\rightarrow(2)$. Fix a point p in R and let R_a be the connected component of the open set $(q \in R; u(q) < a)(a > u(p))$ containing the point p. Clearly $\bigcup_{a>u(p)} R_a = R$. Let R^* be the Wiener compactification²⁾ of R, $\Delta = R^* - R$ and μ be the harmonic measure²⁾ on

¹⁾ By positive, we mean non-negative.

²⁾ C. Constantinescu-A. Cornea: Ideale Ränder Riemannscher Flächen. Springer (1963).

M. NAKAI

[Vol. 41,

 Δ with the reference point p. We denote by \overline{R}_a the closure of R_a in R^* and set $\Delta_a = \Delta \cap \overline{R}_a$. Then $\Delta_a \cup (\partial R_a) = \overline{R}_a - R_a$ and \overline{R}_a is clearly a resolutive compactification²⁾ of R_a . So we can speak of the harmonic measure²⁾ $\overline{\mu}_a$ on $\Delta_a \cup (\partial R_a)$ with the reference point p. We set

$$\mu_a = egin{cases} ar{\mu}_a & ext{ on } arDelta_a; \ 0 & ext{ on } arDelta - arDelta_a. \end{cases}$$

Then μ_a is the measure on \varDelta with $0 \leq \mu_a \leq \mu_{a'} \leq \mu$ for a < a'. Let $\varDelta_{\infty} = \bigcup_{a > u(p)} \varDelta_a$. Then $u(q) = \infty$ on $\varDelta - \varDelta_{\infty}$ and so

$$u(p) = \int_{\mathcal{A}} u(q) d\mu(q)$$

shows that $\mu(\varDelta - \varDelta_{\infty}) = 0$. From this it easily follows that

(*)
$$\lim_{a\to\infty}\int_{\mathcal{A}} v(q)d\mu_a(q) = \int_{\mathcal{A}} v(q)d\mu(q)$$

1

for any v in HB(R). Let u_n be the least harmonic majorant of u and n. Then $u_n(q) = \min(u(q), n)$ on $\Delta \mu$ -almost everwhere. Clearly

$$\lim \sup_{a\to\infty} \sup_{a\to\infty} \int_{\mathcal{A}} u(q) d\mu_a(q) \leq \int_{\mathcal{A}} u(q) d\mu(q).$$

On the other hand,

$$\lim_{a\to\infty} \inf_{a\to\infty} \int_{\mathcal{A}} u(q) d\mu_a(q) \ge \lim_{a\to\infty} \int_{\mathcal{A}} u_n(q) d\mu_a(q).$$

By using (*) and by letting $n \nearrow \infty$, we get

$$\lim \inf_{a\to\infty} \int_{\mathcal{A}} u(q) d\mu_a(q) \ge \int_{\mathcal{A}} u(q) d\mu(q).$$

Hence we finally conclude that

(**)
$$\lim_{a\to\infty}\int_{\mathcal{A}}u(q)d(\mu-\mu_a)(q)=0.$$

Now it is easy to see that

This with (**) gives that $\lim_{a\to\infty} a\omega(\mathfrak{L}(u; a); p)=0$.

Proof of the implication (3) \rightarrow (1). Choose a sequence (a_n) of positive numbers such that $u(p) < a_1 < a_2 < \cdots < a_n < \cdots$, $\lim_{n \to \infty} a_n = \infty$ and $a_n \omega(\mathfrak{L}(u; a_n); p) < 1/n^3$. We set $b_n = na_n$ and

$$w_n(q) = \begin{cases} \omega(\mathfrak{L}(u; a_n); q) & q \in R_{a_n}; \\ 1 & q \in R - R_{a_n} \end{cases}$$

and

$$w(q) = \sum_{n=1}^{\infty} b_n w_n(q)$$

on R. Then clearly w(q) is a positive superharmonic function on R and so continuous on the Wiener compactification of $R^{(2)}$. Let $h(q)=u(q)-(\mathfrak{B}u)(q),$

which is a positive harmonic function on R. We have to show that $h \equiv 0$ on R. On the Wiener harmonic boundary²⁾ Γ of R, h vanishes.²⁾

Hence it follows that

 $0 \leq h(q) \leq u(q) \leq a_n = b_n/n \leq w(q)/n$ on $(\overline{R}_{a_n} \cap \Gamma) \cup (\partial R_{a_n})$. By a maximum principle,²⁾ we get $0 \leq h(q) \leq w(q)/n$ on R_{a_n} . Hence by making $n \nearrow \infty$, we must have $h \equiv 0$ on R. 3. For an example, consider the circular slits disc $R = (z; 0 < |z| < 1) - \bigcup_{n=1}^{\infty} \mathfrak{S}_n$. Here \mathfrak{S}_n is a circular slit $(r_n e^{i\theta}; -\alpha_n \leq \theta \leq \alpha_n)$, where $1 > r_1 > r_2 > \cdots > r_n > \cdots$, $\lim_{n \to \infty} r_n = 0$ and $0 \leq \alpha_n < \pi$.

If we take α_n so large as to make the harmonic measure of the complementary circular slit $(r_n e^{i\theta}; \alpha_n \leq \theta \leq 2\pi - \alpha_n)$ with respect to (z; |z| < 1) less larger than $\varepsilon_n / \log(1/r_n)$ with $\varepsilon_n \setminus 0$, then $\log(1/|z|)$ is quasi-bounded on R. This is easily seen by checking the condition (3).

Contrary, we can choose α_n so small as to make the harmonic measure of $(re^{i\theta}; 0 \leq \theta \leq 2\pi)$ with respect to R less smaller than $1/2 \log(1/r)$ for any r in (0, 1). The extreme case of such a type is obtained by taking $\alpha_n = 0$ $(n=1, 2, \cdots)$. In such a case, $\log(1/|z|)$ is not quasi-bounded on R. This is readily seen from the condition (2).