65. On Automorphisms of Abelian von Neumann Algebras

By Hisashi Choda
Department of Mathematics, Osaka Gakugei University
(Comm. by Kinjirô Kunugr, m.J.A., April 12, 1965)

1. Throughout this note, we shall use the terminology due to J. Dixmier [2] without further explanations.

Following after H. A. Dye [3], we shall introduce some fundamental definitions on automorphisms of an abelian von Neumann algebra \mathcal{A} with the faithful normal trace ϕ normalized by $\phi(1)=1$. A projection P in \mathcal{A} is said to be absolutely fixed under an automorphism g of \mathcal{A} if $Q^{g}=Q$ for each $Q \leqq P$. For the given two automorphisms g and h of \mathcal{A}, we shall denote by $F(g, h)$ the maximal projection in \mathcal{A} which is absolutely fixed under $g h^{-1}$.

Let G be a group of ϕ-preserving automorphisms of \mathcal{A};

$$
\phi\left(A^{\theta}\right)=\phi(A) \text { for each } A \in \mathcal{A} \text { and } g \in G
$$

If $F(g, 1)=0$ for each $g \neq 1$ in G, then G is called freely acting. If α is an automorphism of \mathcal{A}, we say that α depends on G if l.u. ${ }_{g \in G} F(\alpha, g)=1$. We shall denote by $[G]$ the collection of all automorphisms of \mathcal{A} which preserve ϕ and depend on G. We shall call [G] the full group determined by G.

In this paper, we shall give a characterization of dependence of an automorphism with respect to the given group G in terms of the crossed product of an abelian von Neumann algebra \mathcal{A}.
2. At first we shall review briefly the concept of the crossed product of an abelian von Neumann algebra by an enumerable freely acting group G of ϕ-preservin automorphisms of \mathcal{A}, cf. [1], [4], and [5].

We shall denote an operator valued function defined on G by $\sum_{g \in G} g \otimes A_{g}$ where $A_{g} \in \mathcal{A}$ is the value of the function at $g \in G$. Let \mathscr{D} be the set of all functions such that $A_{g}=0$ up to a finite subset of G. Then \mathscr{D} is a linear space with the usual operations of the addition and the scalar multiplication, and becomes a ${ }^{*}$-algebra by the following operations:

$$
\left(\sum_{g \in G} g \otimes A_{g}\right)\left(\sum_{h \in G} h \otimes B_{h}\right)=\sum_{g, h \in G} g h \otimes A_{g} B_{h}^{g^{-1}}
$$

and

$$
\left(\sum_{g \in G} g \otimes A_{g}\right)^{*}=\sum_{g \in G} g^{-1} \otimes A_{g}^{* g}
$$

For a trace ϕ in \mathcal{A}, we shall introduce a trace φ in \mathscr{D} by

$$
\varphi\left(g \otimes A_{g}\right)= \begin{cases}\phi\left(A_{g}\right) & \text { for } g=1 \\ 0 & \text { for } g \neq 1\end{cases}
$$

and

$$
\varphi\left(\sum_{g \in \in} g \otimes A_{g}\right)=\sum_{g \in \in} \varphi\left(g \otimes A_{g}\right)
$$

Then the restriction of φ on $\mathcal{A}=1 \otimes \mathcal{A}$ coincides with ϕ and φ is faithful on \mathscr{D}, cf. [4]. Let \mathscr{H} be the representation space of \mathcal{A} by ϕ, cf. [2], then $G \otimes \mathscr{A}$, in the sense of H. Umegaki [6], is the representation space of \mathscr{D} by φ, and \mathscr{D} is represented faithfully on $G \otimes \mathcal{H}$.

We define the operators $1 \otimes A$ and U_{g} on $G \otimes \mathcal{A}$ for each $A \in \mathcal{A}$ and $g \in G$ by

$$
1 \otimes A\left(\sum_{h \in \Theta} h \otimes B_{h}\right)=\sum_{h \in \Theta} h \otimes A B_{h}
$$

and

$$
U_{g}\left(\sum_{h \in G} h \otimes B_{h}\right)=\sum_{h \in G} g h \otimes B_{h}^{g^{-1}}
$$

for any $\sum_{h \in G} h \otimes B_{h} \in \mathscr{D}$, being considered as a dense linear subset of $G \otimes \mathcal{H}$. Then U_{g} is a unitary operator and we have

$$
U_{g}^{*}(1 \otimes A) U_{g}=1 \otimes A^{g} .
$$

Hereafter, we shall identify $1 \otimes A$ with A since \mathcal{A} is isomorphic to $1 \otimes \not \subset$.

The crossed product $G \otimes \mathcal{A}$ of \mathcal{A} by G (with respect to ϕ) is the weak closure of \mathscr{D} on $G \otimes \mathscr{A}$, being considered \mathscr{D} as a *-algebra of operators on $G \otimes \mathscr{H}$, that is, $G \otimes \mathcal{A}$ is the von Neumann algebra generated by \mathcal{A} and $\left\{U_{g}: g \in G\right\}$. Then each element in $G \otimes \mathcal{A}$ has the form of $\sum_{g \in G} A_{g} U_{g}$, where $A_{g} \in \mathcal{A}$.

Now, we shall investigate the interrelation of the dependence of automorphisms and the crossed product of abelian von Neumann algebras in the following

Theorem 1. Let \mathcal{A} be an abelian von Neumann algebra with the faithful normal trace ϕ normalized by $\phi(1)=1, G$ be a freely acting group of ϕ-preserving automorphisms of \mathcal{A} and α be an automorphism of \mathcal{A} which depends on G. Then α can be extended to an inner automorphism of $G \otimes \mathcal{A}$ which is induced by a unitary operator

$$
U=\sum_{g \in G} E_{g} U_{g}
$$

where E_{g} satisfies the following properties:
(1) E_{g} is a projection in \mathcal{A} for every $g \in G$,
(2) $E_{g} E_{h}^{-}=0$ for $g \neq h$,
(3) $\sum_{g \in G} E_{g}=1$,
(4) E_{g} is absolutely fixed under αg^{-1}.

Proof. Put

$$
E_{g}=F(\alpha, g) \quad \text { and } \quad U=\sum_{g \in G} E_{g} U_{g},
$$

then it is clear by the definition of $F(\alpha, g)$ that E_{g} satisfies the conditions (1) and (4).

Since G is a freely acting group,

$$
E_{g} E_{h}=F(\alpha, g) F(\alpha, h)=0,
$$

that is (2). By the dependence of α,

$$
\sum_{g \in G} E_{g}=\sum_{g \in G} F(\alpha, g)=1
$$

which is (3).
By the following direct computations, we can see that U is a unitary operator in $G \otimes \mathcal{A}$ and that U induces an inner automorphism of $G \otimes \mathcal{A}$ which is an extension of α :

$$
\begin{aligned}
U^{*} U & =\left(\sum_{g \in G} E_{g} U_{g} * *\left(\sum_{h \in G} E_{h} U_{h}\right)=\sum_{g, h \in G} U_{g}^{*} E_{g} E_{h} U_{h}\right. \\
& =\sum_{g \in G} U_{s}^{*} E_{g} U_{g}=\sum_{g \in G} E_{g}=1, \\
U U^{*} & =\left(\sum_{g \in G} E_{g} U_{g}\right)\left(\sum_{n \in \epsilon} E_{h} U_{h}\right)^{*}=\sum_{g, h \in G} E_{g} U_{g} U_{n}^{*} E_{h} \\
& =\sum_{g, h \in G} E_{g} E_{h}{ }^{n-1} U_{g h-1}=\sum_{g, h \in G}\left(E_{g} E_{h}\right)^{\alpha_{g}-1} U_{g h}-1 \\
& =\sum_{g \in G} E_{g}=1,
\end{aligned}
$$

and

$$
\begin{aligned}
U^{*} A U & =\left(\sum_{g \in G} E_{g} U_{g}\right)^{*} A\left(\sum_{h \in G} E_{h} U_{h}\right)=\sum_{g, h \in G} U_{g}^{*} E_{g} A E_{h} U_{h} \\
& =\sum_{g \in \epsilon} U_{g}^{*} E_{g} A U_{g}=\sum_{g \in \epsilon}\left(E_{g} A\right)^{\alpha}=A^{\alpha},
\end{aligned}
$$

for each $A \in \mathcal{A}$. This proves the theorem.
Conversely, we have the following
Theorem 2. Let \mathcal{A} and G be as in Theorem 1. Then a ϕ preserving automorphism α of \mathcal{A} depends on G if α can be extended to an inner automorphism of $G \otimes \mathcal{A}$.

Proof. We suppose that α can be extended to an inner automorphism of $G \otimes \mathcal{A}$ which is induced by a unitary operator U in $G \otimes \mathcal{A}$. Then we have

$$
A^{\alpha}=U^{*} A U, \text { for each } A \in \mathcal{A},
$$

whence $U A^{\alpha}=A U$. Set $U=\sum_{g \in G} A_{g} U_{g}$, then, for any $A \in \mathcal{A}$,

$$
U A^{\alpha}=\left(\sum_{g \in G} A_{g} U_{g}\right) A^{\alpha}=\sum_{g \in G} A_{g} A^{\alpha_{g}-1} U_{g}
$$

and

$$
A U=A\left(\sum_{g \in G} A_{g} U_{g}\right)=\sum_{g \in G} A A_{g} U_{g} .
$$

therefore we have

$$
A_{g} A^{\alpha \theta^{\alpha-1}}=A A_{g},
$$

for each $A \in \mathcal{A}$ and $g \in G$.
Let E_{g} be the carrier projection of A_{g}. Then, for any characterχ in E_{g} (that is a homomorphism of \mathcal{A} onto the field of all complex numbers such that $\chi\left(E_{g}\right)=1$),

$$
\chi\left(A_{q}\right) \chi\left(A^{\alpha q^{-1}}\right)=\chi\left(A_{g} A^{\alpha \sigma^{-1}}\right)=\chi\left(A A_{g}\right)=\chi(A) \chi\left(A_{g}\right),
$$

for each $A \in \mathcal{A}$, so that we have

$$
\chi\left(A^{\alpha_{0}-1}\right)=\chi(A), \text { for each } A \in \mathcal{A} .
$$

Therefore E_{g} is absolutely fixed under αg^{-1}, so that E_{g} is dominated by $F(\alpha, g)$.

Denote $E=$ l.u.b. $_{g \in G} E_{g}=\sum_{g \in G} E_{g}$ and $F=1-E$. Then

$$
F U=F\left(\sum_{g \in G} A_{g} U_{g}\right)=\sum_{g \in G} F A_{g} U_{g}=0,
$$

whence $E=1$, or l.u.b. ${ }_{g \in G} F(\alpha, g)=1$. Therefore α depends on G.
3. We shall call the algebra of all operators of \mathcal{A} which is invariant under all $g \in G$ the fixed algebra of G.

Theorem 3. Let \mathcal{A} and G be as Theorem 1. Then [G] has the same fixed algebra as G.

Proof. Let \mathscr{Z} be the fixed algebra of G. Then, for each $A \in \mathscr{L}$,

$$
\begin{aligned}
A^{\alpha} & =U^{*} A U=\left(\sum_{g \in G} E_{g} U_{g}\right)^{*} A\left(\sum_{h \in G} E_{h} U_{h}\right) \\
& =\sum_{g, h \in G} U_{g}^{*} E_{g} A E_{h} U_{h}=\sum_{g \in G} U_{g}^{*} E_{g} A U_{g} \\
& =\sum_{g \in G}\left(E_{g} A\right)^{g}=\sum_{g \in G} E_{g}^{\alpha} A=A .
\end{aligned}
$$

Therefore the fixed algebra of $[G]$ contains that of G. The converse implication is obvious. This proves the theorem.

References

[1] H. Choda and M. Echigo: Some remarks on von Neumann algebras with the Property Q. Memoirs of Osaka Gakugei Univ., No. 13, 13-21 (1964).
[2] J. Dixmier: Les Algebres d'Operateurs dans l'Espace Hilbertien. GauthierVillars, Paris (1957).
[3] H. A. Dye: On groups of measure preserving transformations I. Amer. J. Math., 81, 119-159 (1959).
[4] M. Nakamura and Z. Takeda: On some elementary properties of the crossed product of von Neumann algebras. Proc. Japan Acad., 34, 489-494 (1958).
[5] T. Turumaru: Crossed product of operator algebras. Tohoku Math. J., 10, 355-365 (1958).
[6] H. Umegaki: Positive definite functions and direct product of Hilbert space. Tohoku Math. J., 7, 206-211 (1955).

