62. On Linear Holonomy Group of **Riemannian Symmetric Spaces**

By Jun NAGASAWA

Kumamoto University (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1965)

Let M be a connected Riemannian manifold with Riemannian structure g, of dimension n and of class C^{∞} , and let M_p be the tangent space of M at p. We denote by L_p the group of all linear transformations of M_p . Let A_p be the subgroup of L_p consisting of all elements of L_p which leave invariant the scalar product $g_p(X,$ Y), the curvature tensor R and its successive covariant differentials $\nabla^k R(k=1,2,\cdots)$ at p. A_p is a Lie group as a closed subgroup of the Lie group L_p . We denote by h(p) the linear holonomy group of M at p. h(p) is a Lie group, and it's identity component $h(p)^{\circ}$ is the restricted linear holonomy group of M at $p \lceil 3 \rceil$. In this note we shall denote by G° the identity component of a Lie group G.

Theorem 1. Let M be a Riemannian locally symmetric space, then the restricted holonomy group $h(p)^{\circ}$ is contained in A_{p}° at each point p in M.

Proof. Since M is an analytic Riemannian manifold, the Lie algebra of h(p) consists of the following matrix [3],

 $\sum_{r\,s} \lambda_{rs} \, R_{rs}$ where $(R_{rs})_{ij} = (R_{ijrs})_p$. We take a local coordinate system (x_1, \cdots, x_n) at p such that $\{(\partial/\partial x_1)_p, \dots, (\partial/\partial x_n)_p\}$ is an orthonormal base of M_p . We express each element of A_p by a matrix with respect to the above base. Then A_p consists of all orthogonal matrices $||a_{ij}||$ which satisfy

$$\sum_{\alpha,\beta,\gamma,\delta}a_{ilpha}a_{jeta}a_{k\gamma}a_{l\delta}\,(R_{lphaeta\gamma\delta})_p=(R_{ijkl})_p$$
 .

Therefore the Lie algebra of A_p consists of all skew symmetric matrices $|| \mu_{ij} ||$ which satisfy

 $\{\mu_{ih}(R_{hjkl})_p + \mu_{jh}(R_{ihkl})_p + \mu_{kh}(R_{ijhl})_p + \mu_{lh}(R_{ijkh})_p\} = 0.$ From the Ricci identity we have

$$abla_s
abla_r R_{ijkl} -
abla_r
abla_s R_{ijkl} = \ -\sum\limits_h \left\{ R^h_{irs} R_{hjkl} + R^h_{jrs} R_{ihkl} + R^h_{krs} R_{ijhl} + R^h_{lrs} R_{ijkl}
ight\} \, .$$

Since M is locally symmetric, the left sides of this expression vanish. By lowering the index h and making use of the identities $R_{ijrs} =$ $-R_{ijrs}$,

$$\sum_{h} \{ (R_{ihrs})_p (R_{hjkl})_p + (R_{jkrs})_p (R_{ihkl})_p \\ + (R_{khrs})_p (R_{ijhl})_p + (R_{lhrs})_p (R_{ijkh})_p \} = 0.$$

This means that the Lie algebra af h(p) is contained in the Lie

algebra of A_p . Therefore we have $h(p)^0 \subset A_p^0$.

We denote by I(M) the group of isometries of M, and by H_p the isotropy group of I(M) at p, and by dH_p the linear isotropy group of H_p . We have proved in [5] that for a simply connected Riemannian globally symmetric space M, $A_p = dH_p$ at each p in M. Since M is simply connected $h(p)^0 = h(p)$. Therefore we have the following.

Corollary. Let M be a simply connected Riemannian globally symmetric space, then $h(p) \subset dH_p$.

Theorem 2. Let M be a simply connected compact Riemannian globally symmetric space, then $h(p) = A_p^0$.

In order to prove Theorem 2 we need some lemmas. We denote by J_p the isotropy group of I(M) at p, and by dJ_p the linear isotropy group of J_{v} .

Lemma 1. Let M be a Riemannian globally symmetric space. then $H_p^0 = J_p$.

Proof. Since M is a Riemannian globally symmetric space, $I(M)^{\circ}$ acts transitively on M[2]. We choose a subset Q of I(M) such that $I(M) = \bigcup aI(M)^{\circ}$ and $aI(M)^{\circ} \cap bI(M)^{\circ} = \emptyset$ whenever $a \neq b(a, b \in Q)$.

Since $I(\tilde{M})^{\circ} = \bigcup_{p \in M} J_p$, we have $I(M) = \bigcup_{a \in Q} (\bigcup_{p \in M} aJ) = \bigcup_{p \in M} (\bigcup_{a \in Q} aJ)$. But $I(M) = \bigcup_{p \in M} H_p$, and $aJ_p \cap bJ_p = \emptyset$ whenever $a \neq b(a, b \in Q)$. Therefore we have $H_p^0 = J_p$.

Lemma 2. Let M be a simply connected Riemannian globally symmetric space, then $(dH_p)^0 = dJ_p$.

Proof. We have proved in [5] that for a simply connected analytic complete Riemannian manifold, H_p is isomorphic to dH_p as Lie groups, and that this isomorphism is given by the correspondence $f \in H_p \longrightarrow (df)_p \in dH_p$. Therefore $(dH_p)^0$ coincides with $d(H_p^0)$ which is the image of H_p^0 under this isomorphism. By Lemma 1 $d(H_p^0)$ coincides with dJ_p .

Proof of Theorem 2. Since M is a simply connected Riemannian globally symmetric space, we have $A_p = dH_p \lceil 5 \rceil$. Therefore by lemma 2 we get $A_p^{\scriptscriptstyle 0} = dJ_p$. Since M is compact, dJ_p is contained in h(p) [6], and hence $A_p^0 \subset h(p)$. On the other hand, from Theorem 1 $h(p)^{\circ} \subset A_{p}^{\circ}$. Since M is simply connected, we have $h(p)^{\circ} = h(p)$.

Example. Consider in E^{n+1} a sphere $S^n (n \ge 2)$ with the natural Riemannian metric. S^n satisfies the conditions of Theorem 2. Since S^n is of constant curvature, $A_p = 0(n)$, the rotation group of E^n . Therefore we have $h(p) = 0(n)^{\circ}$.

Theorem 3. If M is a Riemannian globally symmetric space. and for some positive number α the Ricci curvature K satisfies

No. 4]

 $K(U, U) \ge \alpha$ for all unit vectors U at every point of M, then $h(p)^0 = A_p^0$.

Proof. Let \widetilde{M} be the universal covering manifold of M, and π be the projection mapping from \widetilde{M} to M, and g be the metric tensor field of M. Defining the tensor field \widetilde{g} on \widetilde{M} by $\widetilde{g} = \pi^* g$, \widetilde{M} becomes a complete simply connected Riemannian locally symmetric space, which is a Riemannian globally symmetric space [2]. Since \widetilde{M} is a complete Riemannian manifold whose Ricci tensor \widetilde{K} satisfies $\widetilde{K}(\widetilde{U},$ $\widetilde{U}) \geq \alpha$ for all unit vectors \widetilde{U} at every point of \widetilde{M} , \widetilde{M} is compact ([4]p. 105). If we denote by $\widetilde{h}(\widetilde{p})$ the linear holonomy group of \widetilde{M} at \widetilde{p} , then from Theorem 2 we have $\widetilde{h}(\widetilde{p}) = \widetilde{A}_{\widetilde{P}}^{0}$. On the other hand, if $\pi(\widetilde{p}) = p$, $\widetilde{h}(\widetilde{p}) = h(p)^{\circ}$ [3] and $\widetilde{A}_{\widetilde{p}} = A_{p}$. Therefore we have $h(p)^{\circ} = A_{p}^{\circ}$.

Corollary 1. If M is a complete Riemannian locally symmetric space, and for some positive number α the Ricci curvature K satisfies $K(U, U) \geq \alpha$ for all unit vectors U at every point of M, then $h(p)^{\circ} = A_p^{\circ}$.

Corollary 2. If a compact Riemannian globally symmetric space M has non zero sectional curvature, then $h(p)^0 = A_p^0$.

Proof. Since the sectional curvature of a compact Riemannian globally symmetric space is non negative [1], now it is positive, and hence the Ricci curvature is also positive. Since M is compact, there exists a positive number α such that $K(U, U) \geq \alpha$ for all unit vectors U at every point of M.

References

- [1] S. Helgason: On Riemannian curvature on homogeneous spaces. Proc. Amer. Math. Soc., 9 (1958).
- [2] —: Differential Geometry and Symmetric Spaces. New York (1962).
- [3] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. New York (1963).
- [4] J. Milnor: Morse Theory. Princeton (1963).
- [5] J. Nagasawa: On linear isotropy group of a Riemannian manifold. Proc. Japan Acad., 41 (1965).
- [6] H. C. Wang: On invariant connections over a principal fibre bundle. Nagoya. Math. J., 13 (1958).