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Let M be a connected Riemannian manifold with Riemannian
structure g, of dimension n and of class C, and let M be the
tangent space of M at p. We denote by L the group of all linear
transformations of M. Let A be the subgroup of L consisting of
all elements of L which leave invariant the scalar product g(X,
Y), the curvature tensor R and its successive covariant differentials
VR,(k- 1, 2,...) at p. A is a Lie group as a closed subgroup of
the Lie group L. We denote by h(p)the linear holonomy group of
M at p. h(p) is a Lie group, and it’s identity component h(p) is
the restricted linear holonomy group of M at p 3. In this note
we shall denote by G the identity component of a Lie group G.

Theorem 1. Let M be a Riemannian locally symmetric space,
then the restricted holonomy group h(p) is contained in A at each
point p in M.

Proof. Since M is an analytic Riemannian manifold, the Lie
algebra of h(p) consists of the following matrix 3,, R, where (R,) (R,)
We take a local coordinate system (x, ...,x) at p such that
{(8/x), ..., (/x)} is an orthonormal base of M. We express each
element of A by a matrix with respect to the above base. Then

A consists of all orthogonal matrices ] a which satisfy
aaaa (R) (R)

Therefore the Lie algebra of A consists of all skew symmetric
matrices ] p ]] which satisfy

{,(R) + p(R) + (R) + (R)}- 0.
From the Ricci identity we have

VVR VVR
RR + RR}.

h

Since M is locally symmetric, the left sides of this expression vanish.
By lowering the index h and making use of the identities R.

Rijrs
{(R.)(R) + (R.)(R)

h

+ (R.)(R,) + (R,.)(R)}- 0.
This means that the Lie algebra af h(p) is contained in the Lie
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algebra of A. Therefore we have h(p)A.
We denote by I(M) the group of isometries of M, and by H

the isotropy group of I(M)at 1o, and by dH the linear isotropy
group of H. We have proved in 5 that for a simply connected
Riemannian globally symmetric space M, A- dH at each p in M.
Since M is simply connected h(p)= h(p). Therefore we have the
following.

Corollary. Le M be a simply connected Riemannian globally
symmetric space, $hen h(p) dH.

Theorem :. Le$ M be a simply connected compac$ Riemannian
globally symmetric space, $hen h(p)- A.

In order to prove Theorem 2 we need some lemmas. We denote
by J the isotropy group of I(M) at p, and by dJ the linear isotropy
group of J.

Lemma 1. Le$ M be a Riemannian globally symmetric space,
then H- J.

Proof. Since M is a Riemannian globally symmetric space, I(M)
acts transitively on M2. We choose a subset Q of I(M) such that
I(M) U aI(M) and aI(M) bI(M) 0 whenever a b(a, b e Q).

a
Since I(M)-- J, we have

I(M)- ) J aJ)- J aJ).
But I(M) J H, and aJ bJ 0 whenever a b(a, b e Q).
Therefore we have H- J.

Lemma :. Le$ M be a simply connecSed Riemannian globally
symmeSric space, Shen (dH) dJ.

Proof. We have proved in 5 that for a simply connected
analytic complete Riemannian manifold, H is isomorphic to dH a.s
Lie groups, and that this isomorphism is given by the correspondence
f e H (df) e dH. Therefore (dH) coincides with d(H) which is
the image of H under this isomorphism. By Lemma 1 d(H)
coincides with dJ.

Proof o Theorem :. Since M is a simply connected Rieman-
nian globally symmetric space, we have A dH5. Therefore by
lemma 2 we get A- dJ. Since M is compact, dJ is contained in
h(p) 6, and hence Ah(p). On the other hand, from Theorem 1
h(p)A. Since M is simply connected, we have h(p)-- h(p).

Example. Consider in E+ a sphere S(n 2) with the natural
Riemannian metric. S satisfies the conditions of Theorem 2. Since
S is of constant curvature, A--0(n), the rotation group of E.
Therefore we have h(p)- 0(n).

Theorem 3. I M is a Riemannian globally symmeSric space,
and for some posi$ive number She Ricci curvaSure K sa$isfies
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K(U, U)>- for all unit vectors U at every point of M, then
h(p)- A.

Proof. Let M be the universal covering manifold of M, and v
be the projection mapping from M to M, and g be the metric tensor
field of M. Defining the tensor field y on M by y- *g, M becomes
a complete simply connected Riemannian locally symmetric space,
which is a Riemannian globally symmetric space [2_. Since is a
complete Riemannian manifold whose Ricci tensor / satisfies /(,
) >= for all unit vectors at every point of 21,. /r is compact
(4p. 105). If we denote by () the linear holonomy group of

’0at , then from Theorem 2 we have h()- A,. On the other hand,
if ()-p, h()-h(p) 3 and A-A. Therefore we have
h(p)- A.

Corollary 1. If M is a complete Riemannian locally symmetric
space, and for some positive number the Ricci curvature K
satisfies K(U, U)>-_ for all unit vectors U at every point of M,
then h(p)- A.

Corollary 2. If a compact Riemannian globally symmetric
space M has non zero sectional curvature, then h(p)- A.

Proof. Since the sectional curvature of a compact Riemannian
globally symmetric space is non negative 1, now it is positive, and
hence the Ricci curvature is also positive. Since M is compact, there
exists a positive number such that K(U, U)>= for all unit
vectors U at every point of M.
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