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118. Some Applications of the Functional
Representations of Normal Operators

in Hilbert Spaces. XVI

By Sakuji INOUE
Faculty of Education, Kumamoto University

(Comm. by Kinjir5 KuNu(I, M.J.A., Sept. 13, 1965)

Let {2}=,.,,...,D(j-l, 2,3,-..,n), and T(2) be the same
notations as those defined in Part XIII [cf. Proc. Japan Acad., Vol.
40, No. 7, 492-497 (1964); let Z() be the sum of the first and second
principal parts of T(); and let us suppose that {,} is everywhere
dense on a (closed or open) rectifiable Jordan curve F and that for
any small positive the circle Il-supl l/e contains the mutually

disjoint sets F, D, D,..., D_, and D inside itself. In this paper
we shall discuss the respective behaviours concerning p of the maximum
moduli of Z() and T(2) on the circle 2-p with sup[ p.

Theorem 43. Let T() be the function with singularities

{2}U D stated above; let Z() be the sum of the first and second
principal parts of T(2); let a-sup2,]; and let Mz(p) denote the

maximum modulus of Z() on the circle [2-p with ap. Then

Mz(p’) Mz(p) (a< p< p’< ),

and or any p with a<p<
1 I1, a,(p)+ib,(p) Mz(p) 1 1(A) _, a (p) + ib’(P) <

where
1 c.T(pet) cos tt dta(P)- - (a<p< ,/-1, 2, 8, ..-).

b,(p)- l-lf T(pet) sin Zt dt

Proof. Let C denote the positively oriented circle I I-P with
a<p< , and let R() be the ordinary part of T(). Then, as already
demonstrated in Theorem 30 of Part XIII quoted above,

1 I T() d- R(-)(z)/(k- 1)! (for every z inside C)
27i o (2--z) -Z(-)(z)/(k-1)! (for every z outside C),

where k-l, 2, 3, .... Furthermore, as can be seen from the method
of the proof of (5) _cf. Proc. Japan Acad., Vol. 38, No. 8, 452-456
(1962), it is verified with the help of these relations that
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1 +--2 cos (0-- )
d$

(a<p< , 0<< 1).
Since, on the other hand,

l I:R(pe 1-R(pe)-- 1+-2 cos (0 t)
dt

by the definition that R(2) is an integral function, we have therefore

(P e)- l oZ(pet) i--
Z 1+m-2m cos (0 t)

dr.

This result and the equality

2 1+-2 cos (0-)
d- 1

enable us to establish the desired inequality M(M(p)for every

with 01.
In addition to it, the following equalities hold:

+ -=. (a,(p) + ibm(p)) -and
ao(p) + i / e ) R p (0<< ),

where a(p) and b(p) are the coefficients defined in the statement
1 f T(pet)dt [cf" Proc. Japanof the present theorem and ao(p)--

Acad., Vol. 40, No. 8, 654-659 (1964). Accordingly

and

(37)
27c

Z dt-
4 = a(p)+ ib(p) ,

so that

(38) a,(p)+ib,(p) " <=Mz <-_ a,(p)+ib(p)

(O<g<l).
Next we can find immediately from (36) that

p 1 eedt
((a(p)+ ib,(p))
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and hence that

=1 =1

On the other hand, as already shown in Theorem 38 cf. Proc.
Japan Acad., Vol. 40, No. 8, 654-659 (1964),

(I

where
i [

2:i J -+
p’(a,(p) + ibm(p))

2

and C_fl-" is essentially an infinite series. Since, in addition, it

is verified by Cauchy’s integral theorem that C_, is irrespective of

C_fl- is absolutely convergent in the domain {2"2 ]>a}. Hence

for ny p ith <p<. By lloin m in (88) to tend to 1 e
obtain therefore (A), s e ere prove.

Thus it remains only to prove that x(p)
Since there exists on the circle 2= t least one point of

or one ccumultin point of {2} such that it does not belon to
itself, e denote by that sinulrity of 2(2). If, contrary to
ht e ish to prove, {(p)} ere bounded on n open intervl
(, ’) ith <’< , then X(2) ould be bounded on the intersection
of the nnulr domain {2: < 2 <’} nd n rbitrry nehbourhood
of =. Since, however, Z(2) is reulr nd hence continuous on that
intersection, the bove result is in contradiction ith the hypothesis
that every 2 of {2} everywhere dense on C is pole in the sense
of the functionl nlysis. Consequently x(p) (p), s e
ished to prove.

emrk i. The notation {2} in the statement of Theorem 48
denotes the closure of {2}.

Theorem 44. Let T(2) nd be the same notations s those
Theorem 48, nd (p) the maximum modulus of T(2) on the
2=p ith <p<. If the ordinary prt R(2) of r(2) is constant,
then

nd if, contrary to it, R(2) is n interl function, then there exists
suitable positive constant Po such that the inequHty z(p’)
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holds for every pair of positive constants p, p’ with a<p<p’<po<
and also M(p)-- (p--a).

Proof. If R() is a constant c, then, as can be found immediately
from the earlier discussion,

l+-2xcos(0-t)
dt (a<p<, O<x<l)

and hence M(p’) M(p) for every pair of p, p’ with a<p< p’ <
Since, moreover, T(2)=c+ Z(2), M(p) Mz(p)-[ c ]. Thus it is a direct
consequence of the preceding theorem that M(p) (pa).

We next consider the case where R(2) is a polynomial in 2 or a
transcendental integral function.

In the first place it follows from the equality T()=R().)+Z(2)
that
(39) M(p)-M(p) i(p) Mz(P) + M(p)

(a< p< , M()=max R(pe) ).

On the other hand, since Mz(P) (pa)and since Ma(p)
decreases monotonously as p tends to a, there exist suitable positive
constants P0, p with a< P0<P< such that Mz(p)+ Ma(p)
Mz(po)-M(po) and hence M(p)Mz(po). In fact, the inequality
Mz(P)+ Ma(p) Mz(po)- Ma(po) holds provided that P0 is chosen suitably
near to a in comparison with p. Suppose now that the annular
closed domains {2: P0] 2 ]P} and {2: p] 2 lp} with a<p<po<p<
are mapped by the transformation w= T(2) onto 2(P0, P) and 2(p, p)
in the complex w-plane respectively. Then 2(P0, P) 2(P, P) and
A(p, p)here enlarges outwards as p decreases to a. As a result, it
is found from the principle of the maximum modulus for a regular
function that M(po)M(p) for every p with a<p <P0. By following
the argument used above, we can therefore establish the inequality
M(p’) Mr(p) holding for every pair of p, p’ with a<p<p’ <p0.
Furthermore it is at once obvious from (39) and the preceding theorem
that M(p) (pa).

With these results the present theorem has been proved.
Remark 2. The results in Theorems 43 and 44 are valid, of

course, for the function T(2) treated in Theorems 41 and 42
Proc. Japan Acad., Vol. 41, No. 2, 150-154 (1965)].

On the assumption that R() is not a constant, we shall next
treat of the relation among Ma(p), Mz(p), and the coefficients of a, b,
(=1, 2, 3...). The following theorem concerning it is, in particular,
significant for sufficiently large values of p from a point of view
of the fact that

M (p) 0
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Theorem 45. Let T() and a be the same notations as before;
and let the ordinary part R() of T() be an integral function, not a
constant; and let K-a(p)/b(p), where %(p) and b(p)are the
coefficients defined before. Then K is independent of values o p as
far as p satisfies the condition a<p< ; and moreover

I.._.K,l<=4Ma(p)Mz(p) (for every p with

where K is a finite or an infinite series according as R() is a

polynomial in or a transcendental integral function.

o,+(,o)++Proof. As already pointed out, -- ,\ + ]

+,+(,o)_++, (,o ,+,+ ,o:>1); and similarly -- ,\ + ]

Accordingly a(--)/b(-)--a(p)/b(p)for every p with apo

and for every + with 0<+< 1. This result implies that a(p)/ b(p)
is a constant independent of values o p as far as p satisfies the
condition a<p< . I we now denote by K+ this constant depending

only on p, an application of the expansions of R(Pe+ and (Pe+
yields the equality

(a<p< , 0<<i)

and hence the inequality

i. ]IKI <M(p)Mz(p)
4

on the assumption that R(J) is not a constant. Since, in addition,

2 2+ .o

27i v 2+
p’R(’)(O)

lu
it is found that , K, is a finite series as far as R() is a polynomial

in 2. Since, however, the expansion of R(P----e+o) is an infinite series

provided that R(J) is a transcendental integral function, and since

the expansion of x( P--- e+") is also an infinite series as already indicated,

K, is an infinite series under this condition on R().
The proo of the theorem has thus been finished.
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Remark 3. Even if R() is a transcendental integral function,, IK,I also converges by virtue of the fact that the expansions of

R() and Z() both converge absolutely in the domain {: a] ] }.
In addition, the result of Theorem 45 is rewritten in the form of

where C_ is the notation used in the course of the proof of Theorem
43.


