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118. Some Applications of the Functional

Representations of Normal Obperators
in Hilbert Spaces. XV1I1

By Sakuji INOUR
Faculty of Education, Kumamoto University
(Comm. by Kinjirdo KUNUGI, M.J.A., Sept. 13, 1965)

Let {A4}=10...,Di(7=1,2,8,-++,7n), and T(2) be the same
notations as those defined in Part XIII [ef. Proe. Japan Acad., Vol.
40, No. 7, 492-497 (1964)]; let %(2) be the sum of the first and second
principal parts of T(1); and let us suppose that {1,} is everywhere
dense on a (closed or open) rectifiable Jordan curve I and that for
any small positive ¢ the circle |2 |=51y1p|2, |+¢& contains the mutually

disjoint sets I, D, D,, -+-, D,_,, and D, inside itself. In this paper
we shall discuss the respective behaviours concerning o of the maximum
moduli of (1) and T(2) on the circle |1|=p with sgplly |[<p<oo.
Theorem 43. Let T(2) be the function with singularities
AU [O D; | stated above; let x(2) be the sum of the first and second
principj:«;l1 parts of T(2); let 0=sup |2,]; and let M,(0) denote the
maximum modulus of %(2) on the circle |2|=p with 0<p<e. Then
M)EM0)  (6<p<p' <),
M(0)—o  (0—0),
and for any o with 0<p<

@ Ly/Slaeriner sMe)= ] e+ <,

where

a,(0)= %S:ﬂ T(pe') cos pt dt
on (6<p< oo, t=1,2,8, --+).
bu(0)= -171_—50 T(pe') sin et dt

Proof. Let C denote the positively oriented circle |1|=p with
o< p< oo, and let R(2) be the ordinary part of 7(2). Then, as already
demonstrated in Theorem 30 of Part XIII quoted above,

1 S T 45— {R“‘“”(z)/(k—l)! (for every z inside C)

2my Jo (A—2)* —x*9(2)/(k—1)! (for every z outside C),
where k=1, 2,3, --+-. Furthermore, as can be seen from the method
of the proof of (5) [ef. Proec. Japan Acad., Vol. 38, No. 8, 452-456
(1962)7, it is verified with the help of these relations that
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1—k°
—2k cos (0— t)d

(0<p< e, 0<k<]).

R(/c,oe"’)+x( e"’) wz%S:zT(pe“) T

Since, on the other hand,
; 1 (* ; 1—g
R K 0 — _S R it d
(k0e™) 21 Jo (oe )1-|—I£ —2£ cos (6 —1)
by the definition that R(2) is an integral function, we have therefore

0O e ____1_ = it 1—¢*
X(/c ¢ ) 2 So Xee )1—(—/:2—2/:003 (UE))

This result and the equality
1 S21! 1 I€2 d 1
1+ £*—2k cos (0 —1)

enable us to establish the desired inequality M,((%)éMx(p) for every

£ with 0<k<1.
In addition to it, the following equalities hold:

@6 1(2e%)= 90 1 IS0 on(< )
+ S @@+ibe(5)  0<e<),

e“’) =x<~‘%e“’) 0<r<1),

1 .
23 @)+ ibo)(

and
WO o 25 @) —ibo)( L) =R(Le?)  (0<r<e),

where a,(0) and b.(0) are the coefficients defined in the statement
2n

of the present theorem and ao(,o):%g T(oe*)dt [cf. Proc. Japan
0

Acad., Vol. 40, No. 8, 654-659 (1964)]. Accordingly
O e 1 ;
AL e?) s L3l ado)+ibio) | w

and

__1_ 21: J(i it :l S b 2 g
37) | 22 e) "at=1 55 | aulo)+ ibulo) v,
so that

(38) Lyl ao)+ib o) Fer SM(L)s 13| auo)+ibuo) | n

2 w=1
0<k<1).
Next we can find immediately from (36) that

o£) ()= )

= ((a’u(p ) + 'l/bu.(lo ))IC"‘
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and hence that
)y au(")%bﬁu(p)] =31 a.(0)+ib.(0) | #*.

=1 "
On the other hand, as already shown in Theorem 38 [cf. Proc.
Japan Acad., Vol. 40, No. 8, 654-659 (1964)],

KW= 0 (12]zp>0),

where

_ l.g T(2) da
2wt Jo AHt!

— 0"(a,(0)+1b,(0))
2

—t

and iC_,J“’“ is essentially an infinite series. Since, in addition, it
w=1
is verified by Cauchy’s integral theorem that C_, is irrespective of p,

ilC_,J—" is absolutely convergent in the domain {2:|2|>0}. Hence
51 au(2)+(2)] < 2 lau)+ ibul0) | < o=
=1 K K m=1
for any p with 0<p<e. By allowing £ in (38) to tend to 1 we
obtain therefore (A), as we were to prove.

Thus it remains only to prove that M,(0)—c (0—0).

Since there exists on the circle |1|=0 at least one point of {2,}
or one accumulating point of {2,} such that it does not belong to {2,}
itself, we denote by oe'* that singularity of x(2). If, contrary to
what we wish to prove, {M,(0)}, were bounded on an open interval
(0, 0") with 0<0’'< o, then x(2) would be bounded on the intersection
of the annular domain {1: 6<| 2|< 0’} and an arbitrary neighbourhood
of oe**. Since, however, ¥(4) is regular and hence continuous on that
intersection, the above result is in contradiction with the hypothesis
that every 2, of {1,} everywhere dense on /" is a pole in the sense
of the functional analysis. Consequently M, (0)— o (0—0), as we
wished to prove.

Remark 1. The notation {4,} in the statement of Theorem 43
denotes the closure of {1,}.

Theorem 44. Let T(2) and ¢ be the same notations as those in
Theorem 43, and M,(0) the maximum modulus of 7(2) on the circle
|2]=p with <p< . If the ordinary part R(2) of T(Z) is a constant,
then

M(N=Mi(p) (0<p<p' <o),

M(0)—  (0—0);
and if, contrary to it, R(2) is an integral function, then there exists
a suitable positive constant o, such that the inequality M,(0")=< M(0)
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holds for every pair of positive constants o, 0’ with o<p<p < 0,< o0,
and also M(0)—  (0—0).

Proof. If R(2) is a constant ¢, then, as can be found immediately
from the earlier discussion,

T(—‘o-e”"’>=—1—~ SMT(‘Oe“) 1—#" dt (6<p<,0<E<])

K 2 Jo 1+ £*—2k cos (6—1t)
and hence Mp(0")= M. (o) for every pair of p, 0’ with o<p<p' <.
Since, moreover, T(2)=c+ (), My(0)=M,(0)—|c|. Thus it is a direct
consequence of the preceding theorem that Mp(0)— < (0—0).

We next consider the case where R(2) is a polynomial in 2 or a
transcendental integral function.

In the first place it follows from the equality T(2)=R(2)+x(A)
that
(39) My(0)— My(0) S My(0) = Mi(0) + Mi(0)

(9<0< 20, My(0)=max | R(pe") .

On the other hand, since M,(0)— < (0—0) and since My(0)
decreases monotonously as 0 tends to o, there exist suitable positive
constants 0, 05 Wwith <0, <p;<eo such that M, (00)+ Mx(0))=
M,(0)— Mg(0,) and hence My(0;)=M(0,). In fact, the inequality
M, (04)+ M(0t) = M,(0,) — Mc(0,) holds provided that o, is chosen suitably
near to ¢ in comparison with ). Suppose now that the annular
closed domains {2: 0,=<| 2| =g} and {2: 0= | 2| = 07} with 0 <0<, <1< o0
are mapped by the transformation w=T(2) onto 4(p0,, ;) and 4(p, o)
in the complex w-plane respectively. Then 4(p,, o) C 4(p, ;) and
4(po, p;) here enlarges outwards as o decreases to 0. As a result, it
is found from the principle of the maximum modulus for a regular
function that M(0,)=< M(p) for every p with 0 <<0<p,. By following
the argument used above, we can therefore establish the inequality
My(0')< Mi(p) holding for every pair of p, 0" with o<p<p' <p,.
Furthermore it is at once obvious from (39) and the preceding theorem
that M(0)— o (0—0).

With these results the present theorem has been proved.

Remark 2. The results in Theorems 43 and 44 are valid, of
course, for the function 7(2) treated in Theorems 41 and 42 [ecf.
Proc. Japan Acad., Vol. 41, No. 2, 150-154 (1965)].

On the assumption that R(2) is not a constant, we shall next
treat of the relation among M.(p), M,(0), and the coefficients of a,, b,
(=1, 2,3---). The following theorem concerning it is, in particular,
significant for sufficiently large values of o from a point of view
of the fact that

MR(‘O)—» (o) l

Moy—0 | O
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Theorem 45. Let 7(2) and o be the same notations as before;
and let the ordinary part R(2) of T(2) be an integral function, not a
constant; and let K,=a;(0)+b.(0), where a,(0) and b,(0) are the
coefficients defined before. Then K, is independent of values of o as
far as o satisfies the condition 0 <0< c; and moreover

21
where >} K, is a finite or an infinite series according as R(2) is a
=l
polynomial in A or a transcendental integral funection.

Proof. As already pointed out, a, (‘0 >+7,b ( ) (2. (0)+1b.(0))K"

=4M(0)M o) (for every o with 0<p< ),

(6<0< o, 0<£<1); and similarly a,(i )—zb ( ) (au.(0)—ibu(0))E™*.

Accordingly aM<p )—l—b”( ) az(0)+bi(p) for every p with 0<po< o

and for every £ with 0<#<1. This result implies that a;(p)+bi(0)
is a constant independent of values of o as far as o satisfies the
condition 6 <p< . If we now denote by K, this constant depending

only on #, an application of the expansions of R(—,‘(;- e“’) and x(% e"")

yields the equality

N (20 (0

and hence the inequality

H{OM(0)  (0<p<e0),

on the assumption that R(2) is not a constant. Since, in addition,

u(p) ?’bﬂ(p) i\ ,—imt
B S —n:S T(oe*)e~t+dt

-] I g,
T omg Jo et
_ O*B¥(0)
= o ,
it is found that g K, is a finite series as far as R(Z) is a polynomial
mel

in 2. Since, however, the expansion of R(ﬁe“’> is an infinite series
K

provided that R(2) is a transcendental integral function, and since

the expansion of x(% e“’) is also an infinite series as already indicated,

S1K, is an infinite series under this condition on R(2).
w1

The proof of the theorem has thus been finished.
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Remark 3. Even if R(2) is a transcendental integral function,
%"1] K, | also converges by virtue of the fact that the expansions of
R(2) and %(2) both converge absolutely in the domain {i: 0<|2|< o},
In addition, the result of Theorem 45 is rewritten in the form of
5 B0 | <myoo)  (0<p<),
pz1 !
where C_, is the notation used in the course of the proof of Theorem
43.



