148. Semigroups with a Maximal Homomorphic Image having Zero^{*)}

By R. J. PLEMMONS and Takayuki TAMURA Maryland, U.S.A., and University of California, Davis (Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1965)

Let S be a semigroup and suppose that S is homomorphic onto a semigroup S' with zero. Then S' is called a Z-homomorphic image of S. A Z-homomorphic image S_0 of S is called a maximal Z-homomorphic image of S if any Z-homomorphic image S' of S is a homomorphic image of S_0 . An ideal T of a semigroup S is called a minimal ideal if it does not properly contain an ideal of S. Of course, a minimal ideal is unique if it exists. If S has a minimal ideal, S has a maximal Z-homomorphic image, but this converse is not true as Example 2 shows. This paper gives a necessary and sufficient condition for a semigroup to have a maximal Z-homomorphic image.

Let I be an ideal of a semigroup S. Then S/I denotes the Rees factor semigroup. The following lemmas are fundamental (cf. [1]).

Lemma 1. Let I_1 and I_2 be ideals. If $I_1 \subseteq I_2$ then S/I_1 is homomorphic onto S/I_2 .

Lemma 2. Let S' be any Z-homomorphic image of a semigroup S. Then there exists an ideal I of S such that S/I is homomorphic onto S'.

Lemma 3. If $I_2 \subset I_1$ and if S/I_1 is homomorphic onto S/I_2 then there is an ideal I_3 of S such that $I_1 \subset I_3$ and S/I_3 is homomorphic onto S/I_1 .

Let \mathfrak{S} be the family of all ideals of a semigroup S. Hereafter, we shall call a subfamily of \mathfrak{S} a family of ideals.

Theorem 1. A semigroup S has a maximal Z-homomorphic image if and only if there is a non-empty family \mathcal{F} of ideals such that the following conditions are satisfied.

(1.1) If $I_{\varepsilon} \in \mathcal{F}$ and $I_{\eta} \in \mathfrak{S}$ such that $I_{\eta} \subseteq I_{\varepsilon}$ then $I_{\eta} \in \mathcal{F}$.

(1.2) If I_{ε} , $I_{\eta} \in \mathcal{F}$, and $I_{\eta} \subseteq I_{\varepsilon}$, then S/I_{ε} is homomorphic onto S/I_{η} .

Proof. Necessity of (1.1) and (1.2): Suppose that S has a maximal Z-homomorphic image S_0 . By Lemma 2, we may assume that $S_0=S/I_0$ where I_0 is an ideal of S. \mathcal{F} is defined to be the system

^{*}) The abstract of this paper was partly announced in [3] by one of the authors.

of all ideals I of S such that $I \subseteq I_0$. Clearly \mathcal{F} satisfies (1.1). To show (1.2), take $I_{\xi}, I_{\eta} \in \mathcal{F}$ such that $I_{\eta} \subseteq I_{\xi}$. Since $I_{\eta} \subseteq I_{\xi} \subseteq I_0, S/I_{\xi}$ is homomorphic onto S/I_0 by Lemma 1. On the other hand, since S/I_0 is a maximal Z-homomorphic image of $S, S/I_0$ is homomorphic onto S/I_{η} and hence S/I_{ξ} is homomorphic onto S/I_{η} . Therefore \mathcal{F} satisfies (1.1) and (1.2).

Sufficiency of (1.1) and (1.2): Suppose that (1.1) and (1.2) are satisfied by \mathcal{F} . Let I_{ε} be any element of \mathcal{F} . We shall prove that S/I_{ε} is a maximal Z-homomorphic image of S. Let S' be any Zhomomorphic image of S. By Lemma 2, S/J is homomorphic onto S' for some ideal J of S. Let $I_{\eta}=J \cap I_{\varepsilon}$. Clearly $\emptyset \neq I_{\eta} \subseteq I_{\varepsilon}$. By (1.1), $I_{\eta} \in \mathcal{F}$. Since $I_{\eta} \subseteq I_{\varepsilon}, S/I_{\varepsilon}$ is homomorphic onto S/I_{η} by (1.2), and S/I_{η} is homomorphic onto S/J because $I_{\eta} \subseteq J$. Therefore S/I_{ε} is homomorphic onto S/J, hence onto S'. This completes the proof.

Thus we know that if a family \mathcal{F} satisfies (1.1) and (1.2), then for every I_{ε} of $\mathcal{F}, S/I_{\varepsilon}$ is a maximal Z-homomorphic image of S. Such a family \mathcal{F} is called a normal family (of ideals) of S.

Suppose that a semigroup S has at least one normal family of ideals. Let \mathfrak{N} denote the system of all non-empty normal families of ideals of S: $\mathfrak{N} = \{\mathcal{F}_{\alpha} : \alpha \in \Xi\}$. By the definition, we immediately have

(2.1) If $\mathcal{F}_{\alpha} \in \mathfrak{N}, \alpha \in \Lambda \subseteq \mathcal{E}$, then the union $\bigcup_{\alpha \in \mathcal{A}} \mathcal{F}_{\alpha} \in \mathfrak{N}$

(2.2) If $\mathcal{F}_{\alpha} \in \mathfrak{N}, \alpha \in \Lambda \subseteq \Xi$, then the intersection $\bigcap_{\alpha \in \Lambda} \mathcal{F}_{\alpha} \in \mathfrak{N}$ if it is not empty.

Let ${\mathcal F}$ be a normal family of ideals and ${\mathcal G}$ be a subfamily of ${\mathcal F}$ such that

 $I_{\varepsilon} \in \mathcal{G}, \ I_{\eta} \in \mathcal{F}, \quad ext{and} \quad I_{\eta} \subseteq I_{\varepsilon} \quad ext{imply} \quad I_{\eta} \in \mathcal{G}$

 \mathcal{G} is called a lower ideal of \mathcal{F} . Then we have

(2.3) If $\mathcal{F} \in \mathfrak{N}$, any lower ideal of \mathcal{F} is also in \mathfrak{N} . By a principal family generated by I_{ϵ_0} in \mathcal{F} we mean a family of all ideals $I_{\epsilon} \in \mathfrak{S}$ such that $I_{\epsilon} \subseteq I_{\epsilon_0}$ where I_{ϵ_0} is a fixed element of \mathcal{F} . Clearly any principal family in \mathcal{F} is a lower ideal of \mathcal{F} and hence a normal family by (1.1) and (1.2).

 \mathfrak{N} contains a unique maximal element $\mathcal{F}_1, \mathcal{F}_1 = \bigcup_{\alpha \in S} \mathcal{F}_{\alpha}$, the union of all normal families; \mathcal{F}_1 is the set of all ideals I of S such that S/I is a maximal Z-homomorphic image of S.

Theorem 2. Let S be a semigroup having a maximal Z-homomorphic image, and let $\mathfrak{N} = \{\mathcal{F}_{\alpha}; \alpha \in \Xi\}$ be the system of all non-empty normal families. Then the following statements are equivalent.

- (3.1) S has a minimal ideal.
- (3.2) $\bigcap_{\alpha \in \mathbb{Z}} \mathcal{F}_{\alpha}$ consists of exactly one ideal.

(3.3) $\cap \mathcal{F}_{\alpha}$ is not empty.

(3.4) $\overset{\text{act}}{There}$ is a normal family \mathcal{F} such that \mathcal{F} consists of exactly one ideal.

Proof. (3.1) \rightarrow (3.2), (3.1) \rightarrow (3.4): If I_0 is a minimal ideal of S, then $\mathcal{F}=\{I_0\}$ is a normal family. Since $I_0\subseteq I$ for all ideals I, \mathcal{F} is contained in any normal family: $\bigcap_{\alpha\in\mathcal{G}}\mathcal{F}_{\alpha}=\{I_0\}$.

 $(3.2) \rightarrow (3.3)$: Trivial. Now we shall prove $(3.3) \rightarrow (3.1)$. Suppose that S has no minimal ideal. Let $J_1 \in \mathcal{F}_0 = \bigcap_{\alpha \in \mathcal{F}} \mathcal{F}_{\alpha}$. Since S has no minimal ideal, there is an ideal J_2 of S such that J_2 is properly contained in J_1 . For $J_i(i=1,2)$ let \mathcal{G}_i denote the principal family generated by $J_i(i=1,2)$. Each \mathcal{G}_i is a normal family, and J_1 is in \mathcal{G}_1 but not in \mathcal{G}_2 ;

$$\mathcal{G}_2 \subset \mathcal{G}_1 \subseteq \mathcal{F}_0.$$

This contradicts the fact that \mathcal{F}_0 is a minimal normal family.

 $(3.4) \rightarrow (3.1)$: Suppose that a normal family \mathcal{F} consists of I_0 alone. If I_0 contains properly an ideal I of S, then \mathcal{F} contains I besides I_0 by (1.1). This is a contradiction. Hence we have (3.1). Thus the theorem has been proved.

Corollary. Let S be a semigroup with a maximal Z-homomorphic image. If S has no minimal ideal, there exists an infinite properly ascending chain of ideals of S

 $(4) \quad \cdots \supset I_n \supset \cdots \supset I_2 \supset I_1$

such that S/I_n is a maximal Z-homomorphic image for each positive integer n.

Proof. By theorem 1 there is a normal family \mathcal{F} of ideals. Let I_2 be one of the elements of \mathcal{F} . If S has no minimal ideal, there is an I_1 such that $I_1 \subset I_2$. Since $I_2 \in \mathcal{F}$, we see $I_1 \in \mathcal{F}$ and S/I_2 is homomorphic onto S/I_1 . By Lemma 3, there is an ideal I_3 such that $I_3 \supset I_2$ and S/I_3 is homomorphic onto S/I_2 . By repeated process, we have an infinite properly ascending chain of ideals.

The converse of the corollary is not true as Example 1 shows. We shall give a few examples without detailed proof.

Example 1. This is an example of a semigroup that has a minimal ideal and yet has an infinite properly ascending chain of ideals satisfying the condition of Corollary.

Let S be the set of symbols:

 $S = \{(i, j): i = 0, 1, 2, \dots; \text{ if } i = 0, \text{ then } j = 0, 1; \\ \text{ if } i > 0, \text{ then } j = 1,2,3,4\}$ and let $I_i = \{(k, j); k \leq i\}$ and $\overline{I}_i = I_i \setminus \bigcup_{k < i} I_k.$ We define an operation in S as follows:

 $(0, 0)^2 = (0, 1)^2 = (0, 0), (0, 0)(0, 1) = (0, 1)(0, 0) = (0, 1)$

No. 8]

if $i \neq 0$, then (i, j)(0, l) = (0, l)(i, j) = (0, l), l = 0, 1; if $i \neq 0, k \neq 0, i \neq k$, then (i, j)(k, l) = (0, 0), l = 0, 1. The product (i, j)(i, l) in $\overline{I}_i, i > 1$, is given by

	(i, 1)	(<i>i</i> , 2)	(i, 3)	(i, 4)	
(i, 1) (i, 2) (i, 3) (i, 4)	(i, 1) (0, 0) (i, 3) (0, 0)	(i, 2) (0, 0) (i, 4) (0, 0)	(0,0) (i, 1) (0,0) (i, 3)	$(0,0) \\ (i, 2) \\ (0,0) \\ (i, 4)$	$egin{pmatrix} I_i/I_{i-1} \ (i\!=\!1,2,\cdots) & \mathrm{is} \ \mathrm{a \ semigroup \ without} \ \mathrm{proper \ homomorphism.} \end{pmatrix}$

Then it is easily seen that S is a semigroup and all I_i 's are ideals of S

$$I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_i \subset \cdots$$

 I_0 is a group and a minimal ideal of S and $S/I_0 \cong S/I_i$ $(i=1, 2, \cdots)$ which is a maximal Z-homomorphic image of S.

Example 2. This is an example of a semigroup that has a maximal Z-homomorphic image and yet has no minimal ideal.

Let S be the set of symbols

 $\{\cdots, a_{-2}, a_{-1}, a_0, a_1, a_2, \cdots\}$

together with an operation defined by the rule that if a_i and a_j are in S, then $a_i a_j = a_k$ where k is the minimum of the integers i and j. Then S is a semigroup under this operation and the following properties hold for S.

1. Each proper ideal I_n of S has the form

$$I_n = \{\cdots, a_{n-2}, a_{n-1}, a_n\},\ n = \cdots, -2, -1, 0, 1, 2, \cdots$$

- 2. For any two integers m and n the semigroups S/I_m and S/I_n are isomorphic.
- 3. For each integer $n, S/I_n$ is a maximal Z-homomorphic image of S.

Example 3. This is an example of a semigroup with at least two non-isomorphic maximal Z-homomorphic images.

Let S be the set of symbols

$$\{a_0, a_1, a_2, \cdots\}$$

together with an operation defined by the rule that if a_i and a_j are in S, then $a_i a_j = a_k$ where k is the largest non-negative even integer less than or equal to the minimum of the integers i and j. Then S is a semigroup with a zero a_0 and the following properties hold for S.

- 1. For each non-negative integer n, the set $I_n = \{a_0, a_1, \dots, a_n\}$ is an ideal of S and there exists a homomorphism of S/I_n onto S. Thus S/I_n is a maximal Z-homomorphic image of S.
- 2. If n is a non-negative integer then S/I_n is isomorphic onto S if and only if n is even.

No. 8]

3. If m and n are non-negative integers then S/I_m and S/I_n are isomorphic if and only if m and n are both even or both odd.

Addendum: After writing this paper, we have found that Theorems 1 and 2 can be extended to a general case, maximal homomorphic images of a given type, with a slight modification. The detailed discussion will be published elsewhere.

References

- [1] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. I, Math. Surveys, Amer. Math. Soc. 7, Providence, R. I., 1961.
- [2] J. A. Green: On the structure of semigroups. Ann. of Math., 54, 163-172 (1951).
- [3] R. Plemmons: Semigroups with a maximal semigroup with zero homomorphic image. Notices of Amer. Math. Soc., 11 (7), 751 (1964).
- [4] D. Rees: On semigroups. Proc. Cambridge Phil. Soc., 36, 387-400 (1940).