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O. INTRODUCTION. In the theory of the (three-valued) Lukasie-
wicz algebras founded by Gr. Moisil, the possibility operator plays
an important role. Moisil denotes the operator by M and we shall
denote by V it defined on a distributive lattice A and it is uniquely
determined by the set K of all elements k e A such that Vk--k.

The purpose of this note is to establish characteristic properties
of the family K. In I we summarize some theorems on closure
operators defined on lattices. In 2, we study these operators in the
case of Kleene algebras, and in 3 we apply these results to the
problem suggested by A. Monteiro.*

1. CLOSURE LATTICES. Let (L, 0, 1, A, V) be a lattice with
first and last elements. If a unary operator V is defined on L such
that"

C1) 70-0, C2) x
C 3) ’(xVy)--xVy, C 4) x-x,

we shall say that the system (L, 0, 1, A, V, P’) is a closure lattice,
and the operator 7 is a closure operator. This notion is a general-
ization of closure operators on topological spaces and was studied by
N. Nakamura [17 (see also [16 and [18).

It is easy to prove that"
C 5) If x<_y, then gx<__gy, or equivalently,
C 6) ’(xA y) <_TxAy.

In [18 it was proved that
1.1. The family K of all invariant elements of a closure operator
has the following properties"

K 1) K is a sub-lattice of L containing 0 and l.
K 2) K is lower relatively complete" that is, for all x e L,

the set [k e K" x gk} has an infimum belonging to K.
Moreover we have

(1) Vx--A {ke K" x_k}.
Conversely, if K is a subset of L with the properties K 1) and K 2),
(1) defines a closure operator V on L, and K is the set of all in-
variant elements by V.
*) The results of this paper were presented to the "UniSn Matem,tica Argentina"
in October 1964.
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We shall say that a unary operator z/ defined on L satisfying
I1) z/l-l, I2)
I3) A(xAy)=AxAly, I4) AAx=Ax

is an interior operator.
In [18 the dual orm o 1.1. was also proved:

1.2. The family H of all invariant elements of an interior
operator has the following properties:

H 1) H is a sub-lattice of L containing 0 and 1.
H 2) H is upper relatively complete" that is, for all x e L

the set {h e H: h <_x} has a supremum belonging to H.
Moreover we have

(2) 2x= /{he H h<_x}.
Conversely, If H is a subset of L with the properties H 1) and H 2),
(2) defines an interior operator on L, and H is the set of all
invariant elements by .

2. KLEENE ALGEBRAS. Let (A, A, /) be a distributive lattice.
If a unary operation is defined on A such that:

M 1) .....x=x, M 2) (x/y)=xA y,
we shall say that the system (A, A, /, ) is a de Morgan lattice.
This notion has been introduced by Gr. Moisil ([11, p. 91) and
studied by J. Kalman [7 under the name of distributive i-lattice.
It is easy to prove that is an involution ([4, p. 4), that is, it
satisfies M1) and

M3) x<_y if and only
As is an involution, we have that if {x}e is a amily o elements
of A such that /x exists, then / x also exists and we have

M4) /x: A x.
iI il

Analogously, if / m exists, then / x also exists and
M 5) A x=

iI
If A has the last element 1, we shall say that A is a de Morgan

algebra. This notion has been studied by A. Bialynicki-Birula and
H. Rasiowa ([3, [2) under the name of quasi-Boolean algebras.
In this case, 0=1 is the first element o A.

I the operation also verifies the condition
K) xA ..x_y/..y,

we shall say that A is a Kleene lattice (algebra). A three-element
algebra of-this kind was used by S.C. Kleene as a characteristic
matrix of a propositional calculus ([8, [9, p. 334). These lattices
were studied by J. Kalman [7 with the name of normal distributive
i-lattices. An important example of Kleene algebras are the N-lattices
of H. Rasiowa [19. We have used the terminology introduced
[15 and 5.
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Let A be a de Morgan algebra. We shall say that a sub-algebra
B of A is lower (upper) vela$ively complete, if B has property K 2)
of 1.1 (property H 2) of 1.2.).

From M 3), M 4), and M 5) we can easily prove the following
2.1. LEMMA. A sub-algebva B of a de Morgan algebra A is
lower relatively complete if and only if it is upper relatively
complete. In this case the operators and respectively defined
by (1) of 1.1. and (2) of 1.2. ave related by the following formulae:

(1) zx=7x, (2) rx=z~x.
We shall say that e A is a Boolean element if there exists an

element e A such that A --0 and V -1. We know that
if it exists, -x is unique, and will be called the Boolean complemen
of z. Let B be the set of all Boolean elements of A. Clearly B
is a Boolean algebra.

We shall use the following result* by A. Monteiro. For com-
pleteness, we give the proof.
2.2. LEMMA. Le$ A be a Kleene algebra. If z e A has a Boolean
complement --z, then --z--=z.

PROOF: By hypothesis we have
(1) zV--z=l,

therefore by M 2)
(3) zA -z=0,

this means
(5) -~z=-z,

(2) zA--z=0,

(4) zV--z=l,

(6) --z=~z,
and so -z and ---z are also Boolean elements. By K ) we can write

(7) zA.z<_-zV-z.
As z,-z, z, -z are Boolean elements, so are (zAz) and

(-zk/ -z). Then by (7) we have -(-zV -z)_( --(zA z), that
is zA --z__ --z /-- z, hence, by (5) z A z -z/- z.

From this relation we deduce
zA ..z--zV ..z)A ..z=(--zA z)V(zA ..z),

hence, by (3) and (5),zAz--zA..z and then
zA z_zA--zA z=0.

So, zAz=0 and by M2), zVz=l, which proves z=--z.
Q.E.D.

2.3. COROLLARY. The set B of all Boolean elements of a Kleene
algebra A is a subalgebra of A.

3. (THREE-VALUED) LUKASIEWICZ ALGEBRAS. The notion of
(three-valued) Lukasiewicz algebra was introduced and developed by
Gr. Moisil ([12, [13, [14) to study the three-valued logic of
J. Lukasiewicz [10J. Its role is similar to Boolean algebras in

Unpublished.
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classical logic. We shall use the following A. Monteiro’s definition 6
that is equivalent to Gr. Moisil’s:
3.1. DEFINITION. A (hee-valued) Lukasiewicz algebra is a
system (A, 1, A, /,-,tT) such that (A, 1, A, /,) is a Kleene
algebra and is a unary operator defined on A that satisfies the
following axioms:*

L1) (xAy)_xAy, L 2) .-x/gx-1,
L 3) xA..x--..xAgx.

Let us recall some properties ([12-[14)"
L4) g(xAy)--xAgy, L S) g(x/y)-gx/gy,
L6) x<_’x, L7) ggx-x,
LS) gx-x if and only if x is a Boolean element of A,
L 9) 0-0.

We must notice that the (three-valued)Lukasiewicz algebras are
examples of Kleene algebras where a non-trivial operator satisfying
L 4), L 6), L 7), and L 9) is defined, unlike Boolean algebras, where
G. Bergman [1 proved that the identity operator is the only one
that satisfies such conditions.

Properties L 5), L 6), L 7), and L9) show that 7 is a closure
operator on A, hence according to 1.1 and LS), it ollows that the
subalgebra B of all Boolean elements of A is lower relatively complete,
.and for all x e A we have

L 10) /x- A {b e B" b

_
x}.

According to 2.1 and 2.3 we can define the operator 2, (that is
interpreted as the necessity operator and noted as by Moisil) dual
of 7, by the formula"

L 11) x- /{b e B" x_ b}
and we have the relations (1) and (2) of 2.1.

Moisil proved the ollowing determination principle [12"
L 12) x<_y if and only if 2x<_2y and gx<_y.

From L10), Lll), and L12) we easily see that the subalgebra B
is separating, that is, if yx for x, y e A then, there exists b e B
such that x_< b and y: b or there exists b’ e B such that b’<_y and b’: x.

In short, we can assert that the family of invariant elements
of the operator coincides with the subalgebra of all Boolean
elements of A, that is lower relatively complete and separating.
The next theorem shows that these properties characterize the set
of invariant elements
3.2. THEOREM. Let A be a Kleene algebra such that the
family B of its Boolean elements is lower relatively complete and
separating. Then one and only one (three-valued) Lukasiewicz

The operation was noted as N by Moisil.
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algebra structure can be defined on A.
PROOF: As B is lower relatively complete, by the formula L 10),

we can define the operator V and according to 1.1, t7 will have the
properties C 1)-C 6) and B will be the family of all invariant elements
of V. To prove the theorem it is sufficient to show that V also
satisfies axioms L 2) and L 3).

Let us prove L2). By C2), x<_x, by M3) it follows that
Tx_< x. As P’x is a Boolean element, from 2.2 it follows that
is the Boolean complement of P’x. Hence we have

1-P’x/x<_ ,-x/g’x<_l.

Let us prove L 3). First of all by 1.2, 2.1, and 2.3 the operator
z/ can be defined, and will have properties 1 1)-I4), moreover it
satisfies

1 x-.....x.
As x<_rx, it is clear that

then, to prove L3) we need to show
(2) 17xAx<_xAx.
This last proof will be done in two steps"

I. Let us prove the following property"
(P) If x,y of A satisfy
(P 1)
(P2) for all b eB such that x_b we have y<_b,

then y<_x.
For, let us suppose that x, y e A, x, y satisfy P 1) and P 2) and

yx. As there cannot exist b e B such that x <_b and yb by P 2),
from the separation property of B it follows that there exists b’e B
such that b’_y and b’x. By b’zx, we have in particular

(3) b’=/= 0.
Moreover
( 4 b’_y_,x.
gxeB and C2) imply x<_P’x. By P2), we have y<_P’x and

b’ <_y, hence
( 5 b’
From (4) and (5)
( 6 )
Applying z/ to both sides o (6) and recalling 1.2 and the formula

(1), we have by 2.2
zlb’ b’ <_zl(, xA P"x) z1, xA zlg’x zl xA

Then b’-0, which contradicts (3). Therefore we have y<_x, and
(P) is proved.
II. (P) and the lower relatively completness o B imply (2). For,
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making y-,,-,xAVx we have
(7) y<_,-,x.
Therefore x, y satisfy P 1). They also satisfy P 2). For, if b e B

and x<_b, then Vx<_Vb=b so ygxb. Then by (P), we have
(8) y=xAxx.
From (7) and (8) we have (2). Q.E.D.
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