146. Boolean Elements in Lukasiewicz Algebras. I

By Roberto Cignoli
Instituto de Matemática Universidad Nacional del Sur, Bahía Blanca, Argentina (Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1965)

0. Introduction. In the theory of the (three-valued) Lukasiewicz algebras founded by Gr. Moisil, the possibility operator plays an important role. Moisil denotes the operator by M and we shall denote by V it defined on a distributive lattice A and it is uniquely determined by the set K of all elements $k \in A$ such that $\nabla k=k$.

The purpose of this note is to establish characteristic properties of the family K. In § 1 we summarize some theorems on closure operators defined on lattices. In § 2, we study these operators in the case of Kleene algebras, and in $\S 3$ we apply these results to the problem suggested by A. Monteiro.*)

1. Closure lattices. Let $(L, 0,1, \wedge, \vee)$ be a lattice with first and last elements. If a unary operator V is defined on L such that:
C 1) $\nabla 0=0$,
C 2) $x \leq \nabla x$,
C 3) $\nabla(x \vee y)=\nabla x \vee \nabla y$,
C4) $\nabla \nabla x=\nabla x$,
we shall say that the system ($L, 0,1, \wedge, \vee, \nabla$) is a closure lattice, and the operator $\bar{\nabla}$ is a closure operator. This notion is a generalization of closure operators on topological spaces and was studied by N. Nakamura [17] (see also [16] and [18]).

It is easy to prove that:
C 5) If $x \leq y$, then $\nabla x \leq \nabla y$, or equivalently,
C6) $\nabla(x \wedge y) \leq \nabla x \wedge \nabla y$.
In [18] it was proved that
1.1. The family K of all invariant elements of a closure operator has the following properties:
$K 1) K$ is a sub-lattice of L containing 0 and 1.
$K 2) K$ is lower relatively complete: that is, for all $x \in L$, the set $\{k \in K: x \leq k\}$ has an infimum belonging to K. Moreover we have
(1) $\quad \nabla x=\wedge\{k \in K: x \leq k\}$.

Conversely, if K is a subset of L with the properties $K 1$) and $K 2$), (1) defines a closure operator \bar{V} on L, and K is the set of all invariant elements by ∇.

[^0]We shall say that a unary operator Δ defined on L satisfying
I 1) $\Delta 1=1$,
I 2) $\Delta x \leq x$,

I 3) $\Delta(x \wedge y)=\Delta x \wedge \Delta y$,
I 4) $\Delta \Delta x=\Delta x$ is an interior operator.

In [18] the dual form of 1.1. was also proved:
1.2. The family H of all invariant elements of an interior operator Δ has the following properties:

H 1) H is a sub-lattice of L containing 0 and 1.
H 2) H is upper relatively complete: that is, for all $x \in L$ the set $\{h \in H: h \leq x\}$ has a supremum belonging to H.
Moreover we have
(2)

$$
\Delta x=\vee\{h \in H: h \leq x\}
$$

Conversely, If H is a subset of L with the properties H 1) and H 2), (2) defines an interior operator Δ on L, and H is the set of all invariant elements by Δ.
2. KLEENE ALGEBRAS. Let (A, \wedge, \vee) be a distributive lattice. If a unary operation \sim is defined on A such that:

$$
M \text { 1) } \sim \sim x=x, \quad M 2) \quad \sim(x \vee y)=\sim x \wedge \sim y
$$ we shall say that the system (A, \wedge, \vee, \sim) is a de Morgan lattice. This notion has been introduced by Gr. Moisil ([11], p. 91) and studied by J. Kalman [7] under the name of distributive i-lattice. It is easy to prove that \sim is an involution ([4], p. 4), that is, it satisfies $M 1$) and

M3) $x \leq y$ if and only if $\sim y \leq \sim x$.
As \sim is an involution, we have that if $\left\{x_{i}\right\}_{i \in I}$ is a family of elements of A such that $\bigvee_{i \in I} x_{i}$ exists, then $\bigwedge_{i \in I} \sim x_{i}$ also exists and we have

$$
\sim \bigvee_{i \in I}^{i \in I} x_{i}=\bigwedge_{i \in I} \sim x_{i} .
$$

Analogously, if $\bigwedge_{i \in I} x_{i}$ exists, then $\bigvee_{i \in I} \sim x_{i}$ also exists and
M5)

$$
\sim \bigwedge_{i \in I}^{i \in I} x_{i}=\bigvee_{i \in I} \sim x_{i} .
$$

If A has the last element 1 , we shall say that A is a de Morgan algebra. This notion has been studied by A. Bialynicki-Birula and H. Rasiowa ([3], [2]) under the name of quasi-Boolean algebras. In this case, $0=\sim 1$ is the first element of A.

If the operation \sim also verifies the condition

$$
K) \quad x \wedge \sim x \leq y \vee \sim y
$$

we shall say that A is a Kleene lattice (algebra). A three-element algebra of this kind was used by S. C. Kleene as a characteristic matrix of a propositional calculus ([8], [9], p. 334). These lattices were studied by J. Kalman [7] with the name of normal distributive i-lattices. An important example of Kleene algebras are the N-lattices of H. Rasiowa [19]. We have used the terminology introduced in [15] and [5].

Let A be a de Morgan algebra. We shall say that a sub-algebra B of A is lower (upper) relatively complete, if B has property $K 2$) of 1.1 (property H2) of 1.2.).

From $M 3$), $M 4$), and $M 5$) we can easily prove the following 2.1. Lemma. A sub-algebra B of a de Morgan algebra A is lower relatively complete if and only if it is upper relatively complete. In this case the operators ∇ and Δ respectively defined by (1) of 1.1. and (2) of 1.2. are related by the following formulae:
(1) $\Delta x=\sim \nabla \sim x$,
(2) $\nabla x=\sim \Delta \sim x$.

We shall say that $x \in A$ is a Boolean element if there exists an element $-x \in A$ such that $x \wedge-x=0$ and $x \vee-x=1$. We know that if it exists, $-x$ is unique, and will be called the Boolean complement of x. Let B be the set of all Boolean elements of A. Clearly B is a Boolean algebra.

We shall use the following result*) by A. Monteiro. For completeness, we give the proof.
2.2. Lemma. Let A be a Kleene algebra. If $z \in A$ has a Boolean complement $-z$, then $-z=\sim z$.

Proof: By hypothesis we have
(1) $z \vee-z=1$,
(2) $z \wedge-z=0$,
therefore by $M 2$)
(3) $\sim z \wedge \sim-z=0$,
(4) $\sim z \vee \sim-z=1$,
this means
(5) $-\sim z=\sim-z$,
(6) $-\sim-z=\sim z$,
and so $\sim z$ and $\sim-z$ are also Boolean elements. By K) we can write

$$
\begin{equation*}
z \wedge \sim z \leq-z \vee \sim-z \tag{7}
\end{equation*}
$$

As $z,-z, \sim z, \sim-z$ are Boolean elements, so are $(z \wedge \sim z)$ and $(-z \vee \sim-z)$. Then by (7) we have $-(-z \vee \sim-z) \leq-(z \wedge \sim z)$, that is $z \wedge-\sim-z \leq-z \vee-\sim z$, hence, by (5) $z \wedge \sim z \leq-z \vee-\sim z$.

From this relation we deduce

$$
z \wedge \sim z \leq(-z \vee-\sim z) \wedge \sim z=(-z \wedge \sim z) \vee(\sim z \wedge-\sim z)
$$

hence, by (3) and (5), $z \wedge \sim z \leq-z \wedge \sim z$ and then

$$
z \wedge \sim z \leq z \wedge-z \wedge \sim z=0
$$

So, $z \wedge \sim z=0$ and by $M 2$), $z \vee \sim z=1$, which proves $\sim z=-z$.
2.3. Corollary. The set B of all Boolean elements of a Kleene algebra A is a subalgebra of A.
3. (THREE-VALUED) LUKASIEWICZ ALGEBRAS. The notion of (three-valued) Lukasiewicz algebra was introduced and developed by Gr. Moisil ([12], [13], [14]) to study the three-valued logic of J. Lukasiewicz [10]. Its role is similar to Boolean algebras in

[^1]classical logic. We shall use the following A. Monteiro's definition [6] that is equivalent to Gr. Moisil's:
3.1. Definition. A (three-valued) Lukasiewicz algebra is a system $(A, 1, \wedge, \vee, \sim, \nabla)$ such that $(A, 1, \wedge, \vee, \sim)$ is a Kleene algebra and ∇ is a unary operator defined on A that satisfies the following axioms:*)
L 1) $\nabla(x \wedge y) \leq \nabla x \wedge \nabla y$,
L2) $\sim x \vee \nabla x=1$,
L 3) $x \wedge \sim x=\sim x \wedge \nabla x$.
Let us recall some properties ([12]-[14]):
L 4) $\quad \nabla(x \wedge y)=\nabla x \wedge \nabla y, \quad L$ 5) $\quad \nabla(x \vee y)=\nabla x \vee \nabla y$,
$L 6) \quad x \leq \nabla x$, L7) $\quad \nabla \nabla x=\nabla x$,
L8) $\nabla x=x$ if and only if x is a Boolean element of A, L9) $\nabla 0=0$.
We must notice that the (three-valued) Lukasiewicz algebras are examples of Kleene algebras where a non-trivial operator satisfying $L 4$), $L 6$), $L 7$), and $L 9$) is defined, unlike Boolean algebras, where G. Bergman [1] proved that the identity operator is the only one that satisfies such conditions.

Properties $L 5$), $L 6$), $L 7$), and $L 9$) show that ∇ is a closure operator on A, hence according to 1.1 and $L 8$), it follows that the subalgebra B of all Boolean elements of A is lower relatively complete, and for all $x \in A$ we have

L 10)

$$
\nabla x=\wedge\{b \in B: b \leq x\}
$$

According to 2.1 and 2.3 we can define the operator Δ, (that is interpreted as the necessity operator and noted as ν by Moisil) dual of ∇, by the formula:
$L 11) \quad \Delta x=\vee\{b \in B: x \leq b\}$
and we have the relations (1) and (2) of 2.1.
Moisil proved the following determination principle [12]:
$L 12) \quad x \leq y$ if and only if $\Delta x \leq \Delta y$ and $\nabla x \leq \nabla y$.
From $L 10$), $L 11$), and $L 12$) we easily see that the subalgebra B is separating, that is, if $y \not \leq x$ for $x, y \in A$ then, there exists $b \in B$ such that $x \leq b$ and $y \not \leq b$ or there exists $b^{\prime} \in B$ such that $b^{\prime} \leq y$ and $b^{\prime} \not \leq x$.

In short, we can assert that the family of invariant elements of the operator ∇ coincides with the subalgebra of all Boolean elements of A, that is lower relatively complete and separating. The next theorem shows that these properties characterize the set of invariant elements of ∇.
3.2. THEOREM. Let A be a Kleene algebra such that the family B of its Boolean elements is lower relatively complete and separating. Then one and only one (three-valued) Lukasiewicz

[^2]algebra structure can be defined on A.
Proof: As B is lower relatively complete, by the formula $L 10$), we can define the operator ∇ and according to $1.1, \nabla$ will have the properties $C 1)-C 6$) and B will be the family of all invariant elements of ∇. To prove the theorem it is sufficient to show that ∇ also satisfies axioms $L 2$) and $L 3$).

Let us prove $L 2$). By $C 2$), $x \leq \nabla x$, by $M 3$) it follows that $\sim \nabla x \leq \sim x$. As ∇x is a Boolean element, from 2.2 it follows that $\sim \nabla x$ is the Boolean complement of ∇x. Hence we have

$$
1=\sim \nabla x \vee \sim x \leq \sim x \vee \nabla x \leq 1
$$

Let us prove L3). First of all by 1.2, 2.1, and 2.3 the operator Δ can be defined, and will have properties $I 1)-I 4$), moreover it satisfies
(1)

$$
\Delta x=\sim \nabla \sim x .
$$

As $x \leq \nabla x$, it is clear that $\sim x \wedge x \leq \sim x \wedge \nabla x$, then, to prove $L 3$) we need to show
(2)
$\nabla x \wedge \sim x \leq \sim x \wedge x$.
This last proof will be done in two steps:
I. Let us prove the following property:
(P) If x, y of A satisfy
(P 1) $y \leq \sim x$,
(P 2) for all $b \in B$ such that $x \leq b$ we have $y \leq b$,
then $y \leq x$.
For, let us suppose that $x, y \in A, x, y$ satisfy $P 1)$ and $P 2$) and $y \not \leq x$. As there cannot exist $b \in B$ such that $x \leq b$ and $y \not \leq b$ by $P 2$), from the separation property of B it follows that there exists $b^{\prime} \in B$ such that $b^{\prime} \leq y$ and $b^{\prime} \not \leq x$. By $b^{\prime} \nless x$, we have in particular

$$
\begin{equation*}
b^{\prime} \neq 0 \tag{3}
\end{equation*}
$$

Moreover
(4)

$$
b^{\prime} \leq y \leq \sim x
$$

$\nabla x \in B$ and $C 2$) imply $x \leq \nabla x$. By $P 2$), we have $y \leq \nabla x$ and $b^{\prime} \leq y$, hence
(5)

From (4) and (5)
(6)

$$
b^{\prime} \leq \nabla x
$$

$b^{\prime} \leq \sim x \wedge \nabla x$.
Applying Δ to both sides of (6) and recalling 1.2 and the formula (1), we have by 2.2

$$
\begin{aligned}
\Delta b^{\prime} & =b^{\prime} \leq \Delta(\sim x \wedge \nabla x)=\Delta \sim x \wedge \Delta \nabla x=\Delta \sim x \wedge \nabla x \\
& =\sim \nabla x \wedge \nabla x=0
\end{aligned}
$$

Then $b^{\prime}=0$, which contradicts (3). Therefore we have $y \leq x$, and (P) is proved.
II. (P) and the lower relatively completness of B imply (2). For,
making $y=\sim x \wedge \nabla x$ we have (7)

$$
y \leq \sim x
$$

Therefore x, y satisfy $P 1$). They also satisfy $P 2$). For, if $b \in B$ and $x \leq b$, then $\nabla x \leq \nabla b=b$ so $y \leq \nabla x \leq b$. Then by (P), we have

References

[1] Bergman, G.: Multiplicative closures. Port. Math., 11, 169-172 (1952).
[2] Bialynicki-Birula, A.: Remarks on quasi-Boolean algebras. Bull. Acad. Pol. Sci. C1 III, 5, 615-619 (1957).
[3] Bialynicki-Birula, A., and Rasiowa, H.: On the representation of quasiBoolean algebras. Bull. Acad. Pol. Sci. C1 III, 5 (1957).
[4] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. Coll. Pub., 2nd. ed., Providence (1948).
[5] Brignole, D., et Monteiro, A.: Caractérisation des alèbres de Nelson par des égalités (to appear).
[6] Cignoli, R., and Monteiro, A.: Boolean elements in Lukasiewicz algebras. II. Proc. Japan Acad., 41, 676-680 (1965).
[7] Kalman, J.: Lattices with involution. Trans. Amer. Math. Soc., 87, 485-491, (1958).
[8] Kleene, S. C.: On notation for ordinal numbers. J. Symb. Logic, 3, 150-155, (1938).
[9] -: Introduction to Metamathematics. North-Holland Pub. Co., Amsterdam (1952).
[10] Lukasiewicz, J.: O logike trojwartosciowej. Ruch Filozoficzny, 5, 170 (1920).
[11] Moisil, Gr.: Recherches sur l'algèbre de la logique. Ann. Sci. Univ. Jassy, 22, 1-117 (1935).
[12] -: Recherches sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy, 26, 431-436 (1940).
[13] -: Notes sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy, 27, 86-98 (1941).
[14] -: Sur les ideaux des algèbres Lukasiewicziennes trivalentes. Analele Universitatii C.I. Parhom. Seria Acta Logica, 3, 83-95 (1960).
[15] Monteiro, A.: Matrices de Morgan caractéristiques pour le calcul propositionnel classique. An. Acad. Bras. Sci., 32, 1-7 (1960).
[16] Monteiro, A, et Ribeiro, H.: L'opération de fermeture et ses invariants dans les systèmes partiellement ordonnés. Port. Math., 3, 171-184 (1942).
[17] Nakamura, M.: Closure in general lattices. Proc. Imp. Acad. Japan, 17, 5-6 (1941).
[18] Pereira Gomes, A.: Introducão ao estudo duma nocão de functional en espacos sem pontos. Port. Math., 11, 169-172 (1952).
[19] Rasiowa, H.: N-Lattices and constructive logic with strong negation. Fund. Math., 46, 61-80 (1948).

[^0]: *) The results of this paper were presented to the "Unión Matemática Argentina" in October 1964.

[^1]: *) Unpublished.

[^2]: *) The operation \sim was noted as N by Moisil.

