## 191. On Complete Degrees

By Ken Hirose<br>Department of the Foundations of Mathematical Sciences, Tokyo University of Education<br>(Comm. by Zyoiti Suetuna, m.J.A., Dec. 13, 1965)

In his paper [2], R. M. Friedberg proved that a degree of recursive unsolvability $\boldsymbol{a}$ is complete if and only if $\boldsymbol{a} \geqq \mathbf{0}^{\prime}$. The aim of this note is to prove the following: for each degree a, there exist infinitely many independent degrees $\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}, \cdots$ whose completion are $\boldsymbol{a}$ if and only if $\boldsymbol{a} \geqq \mathbf{0}^{\prime}$. This will be shown as a corollary to the following.

Theorem. For each degree a, there exist infinitely many degrees $\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}, \cdots$ such that:
(1) $\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}, \cdots$ are independent,
(2) $\boldsymbol{b}_{i}^{\prime}=\boldsymbol{b}_{i} \cup 0^{\prime}=\boldsymbol{a} \cup \mathbf{0}^{\prime}$ for $i=0,1, \cdots, n, \cdots$

Let $\alpha(x)$ be a function of degree $\boldsymbol{a}$. We shall construct a function $\lambda x i \beta(x, i)$ such that $\lambda x \beta(x, i)\left(=\beta_{i}(x)\right)$ is not recursive in $\lambda x z \beta(x, z+$ $s g((z+1) \doteq i))\left(=\beta^{i}(x, z)\right)$ and satisfies (2). And let $b_{i}$ be the degree of $\beta_{i}(x)$. As in [1], $\lambda x i \beta(x, i)$ is constructed by defining inductively functions $\psi(s)$ and $\nu(s)$ such that

$$
\beta(x, i)=(\psi(s))_{x, i} \text { for each } x<\nu(s) \text { and each } i<\nu(s) .
$$

1. First, we shall define a recursive predicate $\operatorname{comp}\left(s_{1}, s_{2}\right)$ and function $\phi(e, v)$ of degree $0^{\prime}$ as follows:

$$
\begin{aligned}
& \operatorname{comp}\left(s_{1}, s_{2}\right) \equiv\left(u_{1}\right)_{u_{1}<1 h\left(s_{1}\right)}\left(u_{2}\right)_{u_{2}<1 h\left(s_{2}\right)}\left(u_{3}\right)_{u_{3}<\min \left(1 h\left(s_{1}\right), 1 h\left(s_{2}\right)\right)} \\
& {\left[\left(s_{1}\right)_{u_{1}} \neq 0 \&\left(s_{2}\right)_{u_{2}} \neq 0 \&\left(s_{1}\right)_{u_{3}}=\left(s_{2}\right)_{u_{3}}\right],} \\
& \phi(e, v)= \begin{cases}\mu s\left(T_{1}^{1}(s, e, e) \& \operatorname{comp}(s, v)\right) \\
\text { if }(E s)\left(T_{1}^{1}(s, e, e) \& \operatorname{comp}(s, v)\right),\end{cases}
\end{aligned}
$$

where $T_{1}{ }^{1}\left(\prod_{u<y} p_{u}^{f(u)+1}, e, x\right) \equiv T_{1}^{f}(e, x, y)$.
Now, we shall define the functions $\nu(s)$ and $\psi(s)$ simultaneously by the induction on the number $s$, and put $\beta(x, i)=(\psi(s))_{x, i}$ for each $x<\nu(s)$ and each $i<\nu(s)$.

Stage $\quad s=0$.
$\nu(0)=0$,
$\psi(0)=1$.
Stage $s+1$.
Case 1: $\quad(E y) T_{1}^{2}\left(\widetilde{\beta}^{(s)} 0(y, y),(s)_{1}, \nu(s), y\right)$.
This means that
$(E y)(E b)\left[b \neq 0 \&(i)_{i<y}\left((b)_{i} \neq 0\right) \&(i)_{i<y}(j)_{j<y}\left((b)_{i, j}<2\right) \&\right.$
$\left.(i)_{i<\nu(s)}(j)_{j<\nu(s) \dot{s} g\left(\nu(s) \dot{*}(s)_{0}\right)}\left((b)_{i, j}=(\psi(s))_{i, j+s g\left((j+1) \dot{(s)_{0}}\right)}\right) \& T_{1}{ }^{2}\left(b,(s)_{1}, \nu(s), y\right)\right]$. If we put $x=2^{y} \cdot 3^{b}$, this is in the form

$$
(E x) R(s, \nu(s), \psi(s), x)
$$

where $R$ is recursive predicate.
We define the functions as follows:

$$
\begin{aligned}
& \xi(s)=\mu x R(s, \nu(s), \psi(s), x) \\
& \nu(s+1)=\max \left(\nu(s)+2,(s)_{0}+1, \xi(s)+1\right)
\end{aligned}
$$

and

$$
\psi(s+1)=\mu t\left[t \neq 0 \&(i)_{i<\nu(s+1)}\left((t)_{i} \neq 0\right) \&\right.
$$

$$
(i)_{i<\nu(s)}(j)_{j<\nu(s)}\left((t)_{i, j}=(\psi(s))_{i, j}\right) \&
$$

$$
(i)_{i<(\xi(s))_{0}}(j)_{j<(\xi(s))_{0}}\left((t)_{i, j+s g\left((j+1)-(s)_{0}\right)}=\left((\xi(s))_{1}\right)_{i, j}\right) \&
$$

$$
\left((t)_{\nu(s),(s)_{0}}=\overline{s g}\left(U\left((\xi(s))_{0}\right)\right)\right) \&
$$

$$
\left.(j)_{j<\nu(s+1)}\left((t)_{\nu(s)+1, j}=\alpha(s)\right)\right] .
$$

Case 2: otherwise.

$$
\begin{aligned}
& \nu(s+1)=\nu(s)+2, \\
& \psi(s+1)=\psi(s) \cdot p_{\nu(s)} \cdot p_{\nu(s)+1} \exp \left(\prod_{j<\nu(s+1)} p_{j}^{a(s)}\right) .
\end{aligned}
$$

We set

$$
\beta(x, i)=(\psi(s+1))_{x, i}
$$

for each $x<\nu(s+1)$ and each $i<\nu(s+1)$.
2. We shall prove (1). For each $i$, we consider numbers $s$ such that $(s)_{0}=i$. If Case 1 holds, then

$$
\beta(\nu(s), i)=(\psi(s+1))_{\nu(s),(s)_{0}}=\overline{s g}\left(U\left((\xi(s))_{0}\right)\right) .
$$

Thus, for each $e=(s)_{1}$,

$$
\beta_{i}(\nu(s)) \neq U\left(\mu y T_{1}^{2}\left(\widetilde{\beta}^{i}(y, y), e, \nu(s), y\right)\right) .
$$

If Case 2 holds, then

$$
(\overline{E y}) T_{1}^{2}\left(\widetilde{\beta}^{i}(y, y),(s)_{1}, \nu(s), y\right)
$$

Then, we obtain

$$
\beta_{i}(x) \text { is not recursive in } \beta^{i}(x) \text { for all } i .
$$

That is, $\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}, \cdots$ are independent.
3. Now, we shall prove (2). By the definition of $\phi$ and $\psi$, it is easily see that
(i) $(e)(i)\left[(E y) T_{1}^{1}\left(\bar{\beta}_{i}(y), e, e\right) \rightarrow \phi\left(e, \prod_{j<\nu(e+1)} p_{j}^{(\gamma(e))_{j, i+1}}\right) \neq 0\right]$,
(ii) $\quad(e)(i)\left[\phi\left(e, \prod_{j<\nu(e+1)} p_{j}^{\left(\frac{(4)(e))_{j, i+1}}{}\right) \neq 0}\right.\right.$

$$
\left.\rightarrow T_{1}^{\beta_{i}}\left(e, e, \operatorname{lh}\left(\phi\left(e, \prod_{j<\nu(e+1)} p_{j}^{\left(\psi^{\prime}(e)\right)_{j, i}+1}\right)\right)\right)\right] .
$$

From (i) and (ii), we obtain

$$
(e)(i)\left[(E y) T_{1}^{1}\left(\bar{\beta}_{i}(y), e, e\right) \equiv \phi\left(e, \prod_{j<\nu(e+1)} p_{j}^{(\psi(e))_{j, i}+1}\right) \neq 0\right] .
$$

Therefore,

$$
b_{i}^{\prime} \leqq a \bigcup 0^{\prime} \quad \text { for each } i
$$ because $\psi$ is recursive in a function of degree $a \cup 0^{\prime}$.

On the other hand, we have

$$
\begin{aligned}
(x)(i)(u)_{u>\max (x+1, i)}[\alpha(x) & =(\psi(u+1))_{\nu(x)+1, i}=\beta(\nu(x)+1, i) \\
& \left.=\beta_{i}(\nu(x)+1)\right] .
\end{aligned}
$$

Since $\nu$ is recursive in a function of degree $0^{\prime}$,
(iv)
$\boldsymbol{a} \leqq \boldsymbol{b}_{i} \cup \mathbf{0}^{\prime}$
for each $i$,
which implies
(v) $\quad a \bigcup \mathbf{0}^{\prime} \leqq b_{i} \cup 0^{\prime} \quad$ for each $i$.

Since $b_{i}^{\prime} \geqq 0^{\prime}$, we have
(vi) $\quad b_{i} \cup 0^{\prime} \leqq \boldsymbol{b}_{\boldsymbol{i}}^{\prime} \quad$ for each $i$.

Thus, by (iii), (v), and (vi), we obtain,

$$
b_{i}^{\prime} \leqq a \cup 0^{\prime} \leqq b_{i} \cup 0^{\prime} \leqq b_{i}^{\prime}
$$

that is,

$$
b_{i}^{\prime}=\boldsymbol{a} \cup 0^{\prime}=\boldsymbol{b}_{i} \cup 0^{\prime} \quad \text { for each } i
$$

4. Corollary. For each degree a, there exist infinitely many independent degrees $\boldsymbol{b}_{0}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}, \cdots$ whose completion are $\boldsymbol{a}$ if and only if $\boldsymbol{a} \geqq \mathbf{0}^{\prime}$.

Proof. Apply our theorem with $a \geqq 0^{\prime}$. Then we obtain infinitely many independent degrees $b_{0}, b_{1}, \cdots, b_{n}, \cdots$ such that $b_{i}^{\prime}=a \cup 0^{\prime}$ for each $i$. Since $a \geqq 0^{\prime}$, we have
$\boldsymbol{b}_{i}^{\prime}=\boldsymbol{a}$ for each $i$.

## References

[1] S.C. Kleene and E.L. Post: The upper semi-lattice of degrees of recursive unsolvability. Ann. of Math., 59 (1954).
[2] R.M. Friedberg: A criterion for completeness of degrees of unsolvability. J. Symb. Log., 22 (1957).
[3] S.C. Kleene: Introduction to Metamathematics. New York, Tronto, Amsterdam, and Gröningen (1952).

