33. Note on the Structure of Regular Semigroups

By Miyuki YAMADA

Shimane University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1966)

§1. Introduction. Let $X = \{x_1, x_2, \dots, x_n\}$ be a set in which each element x_i is called a variable. By a *permutation identity* in the variables x_1, x_2, \dots, x_n , we shall mean a form

 $(\mathbf{P}) \qquad \qquad x_1 x_2 \cdots x_n = x_{p_1} x_{p_2} \cdots x_{p_n}$

where (p_1, p_2, \dots, p_n) is a non-trivial permutation of $(1, 2, \dots, n)$.¹⁾ For example, commutativity $x_1x_2=x_2x_1$, left [right] normality $x_1x_2x_3=x_1x_3x_2$ [$x_1x_2x_3=x_2x_1x_3$] and normality $x_1x_2x_3x_4=x_1x_3x_2x_4$ are all permutation identities. If a subset M of a semigroup G satisfies the following condition (C.P), then we shall say that M satisfies the permutation identity (P) in G:

(C.P) For any mapping φ of X into M, the equality

 $\varphi(x_1)\varphi(x_2)\cdots\varphi(x_n)=\varphi(x_{p_1})\varphi(x_{p_2})\cdots\varphi(x_{p_n})$

is satisfied in G.

In particular if G satisfies the permutation identity (P) in G, we simply say that G satisfies the permutation identity (P). For example, a regular semigroup in which the set of idempotents satisfies commutativity is an inverse semigroup firstly introduced by Vagner [5] under the term 'generalized group' (see also [1], p. 28), and the structure of inverse semigroups was clarified by Preston [3] and [4]. A band (i.e., idempotent semigroup) satisfying [left, right] normality is called a [left, right] normal band, and the structure of [left, right] normal bands was also determined by Kimura and the author $\lceil 6 \rceil$. Each of an inverse semigroup and a $\lceil left, right \rceil$ normal band is of course a regular semigroup in which the set of idempotents satisfies a permutation identity. The main purpose of this paper is to present a structure theorem for regular semigroups in each of which the set of idempotents satisfies a permutation identity. The complete proofs are omitted and will be given in detail elsewhere. Any symbol and terminology should be referred to [1] and [6], unless otherwise stated.

§ 2. Generalized inverse semigroups. Let S be a regular semigroup. Then for each element a of S, there exists an element a^* such that $aa^*a=a$ and $a^*aa^*=a^*$. Such an element a^* is called

¹⁾ The form (P) can be considered as the pair $(x_1x_2\cdots x_n, x_{p_1}x_{p_2}\cdots x_{p_n})$ of the two words $x_1x_2\cdots x_n$ and $x_{p_1}x_{p_2}\cdots x_{p_n}$.

No. 2]

an inverse of a. For a given element a of S, an inverse of a is not necessarily unique. An inverse of a is unique for every element a of S if and only if S is an inverse semigroup (see [1], p. 28).²)

At first we shall show several lemmas, without proofs.

Lemma 1. (1) If a regular semigroup S satisfies the following condition (C), then the set of idempotents of S is a band:

(C) For any elements a, b of S and for any inverses a^* of a and b^* of b, the element b^*a^* is an inverse of ab.

(2) If the set of idempotents of a regular semigroup S is a normal band, then S satisfies the condition (C).

Lemma 2. If the set B of idempotents of a regular semigroup S satisfies a permutation identity, then B is a normal band.

Lemma 3. Let S be a regular semigroup in which the set B of idempotents is a band.

(1) If B is a normal band, then the intersection $aS \cap Sb$ (=aSb) of a principal right ideal aS and a principal left ideal Sb is a subsemigroup in which any two of the idempotents commute. In particular, eSe is an inverse semigroup for any idempotent e of S.

(2) If every efe, where e, f are elements of B, has a unique inverse having the form ehe, then B is a normal band.

By using these lemmas, we obtain

Theorem 1. The following five conditions on a regular semigroup S are equivalent:

(1) The set of idempotents of S satisfies a permutation identity in S.

(2) The set of idempotents of S is a normal band.

(3) The set of idempotents of S is a band, and the intersection $aS \cap Sb$ (=aSb) of a principal right ideal aS and a principal left ideal Sb is a subsemigroup in which any two of the idempotents commute.

(4) The set of idempotents of S is a band, and eSe is an inverse subsemigroup for any idempotent e of S.

(5) S satisfies the condition (C). Further every effe, where e, f are idempotents of S, has a unique inverse having the form ehe.

By a generalized inverse semigroup, hereafter we shall mean a regular semigroup in which the set of idempotents satisfies a permutation identity. Hence it follows from Theorem 1 that a semigroup S is a generalized inverse semigroup if and only if S is regular and the set of idempotents of S is a normal band.

§ 3. A structure theorem. The following is due to McLean [2]:

²⁾ In this case, we denote the inverse of a by a^{-1} .

M. YAMADA

For any band B, there exist a semilattice (i.e., commutative idempotent semigroup) Γ and a collection of rectangular bands, $\{B_{\gamma}: \gamma \in \Gamma\}$, such that

- (1) $B = \bigcup \{B_{\gamma} : \gamma \in \Gamma\},\$
- (2) $B_{\alpha} \cap B_{\beta} = \Box$ for $\alpha \neq \beta$ and
- (3) $B_{\alpha}B_{\beta} \subset B_{\alpha\beta}$.

Further such a decomposition of B is unique. Accordingly Γ is unique up to isomorphism, and so are the B_{γ} 's.

The Γ above is called the structure semilattice of B, and B_{γ} is called the γ -kernel of B. Further, this decomposition is called the structure decomposition of B, and denoted by $B \sim \sum \{B_{\gamma} : \gamma \in \Gamma\}$.

Now, we shall introduce the concept of a quasi-direct product: Let Ω be an inverse semigroup, and Γ the set of idempotents of Ω . Then Γ is a commutative idempotent subsemigroup, i.e., a subsemilattice of Ω . Hereafter, we shall call Γ the basic semilattice of Ω . Let L and R be a left normal band and a right normal band, having structure decompositions $L \sim \sum \{L_{\gamma}: \gamma \in \Gamma\}$ and $R \sim \sum \{R_{\gamma}: \gamma \in \Gamma\}$ respectively. Let $S = \{(e, \xi, f): \xi \in \Omega, e \in L_{\xi\xi^{-1}}, f \in R_{\xi^{-1}\xi}\}$, and define multiplication \circ in S as follows:

 $(e, \xi, f) \circ (g, \eta, h) = (eu, \xi\eta, vh),$

where $u \in L_{\xi\eta(\xi\eta)^{-1}}$ and $v \in R_{(\xi\eta)^{-1}\xi\eta}$. Such multiplication \circ is welldefined, since $eL_{\xi\eta(\xi\eta)^{-1}} \subset L_{\xi\eta(\xi\eta)^{-1}}$ and $R_{(\xi\eta)^{-1}\xi\eta}h \subset R_{(\xi\eta)^{-1}\xi\eta}$ and since each of $eL_{\xi\eta(\xi\eta)^{-1}}$ and $R_{(\xi\eta)^{-1}\xi\eta}h$ consists of a single element.

Now, by simple calculation we can easily prove the following lemma:

Lemma 4. The resulting system $S(\circ)$ is a regular semigroup and the set of idempotents of $S(\circ)$ is a normal band. Hence, $S(\circ)$ is a generalized inverse semigroup.

We shall call $S(\circ)$ in Lemma 4 the quasi-direct product of L, Ω and R with respect to Γ , and denote it by $Q(L \otimes \Omega \otimes R; \Gamma)$.³⁾

Now, let S be a generalized inverse semigroup and let B be the normal band consisting of all idempotents of S. Let $B \sim \sum \{B_{\gamma} : \gamma \in \Gamma\}$ be the structure decomposition of B.

Let us define a relation \mathfrak{D} on S as follows:

(D) $x \mathfrak{D} y$ if and only if $\{x^* : x^* \in S \text{ and } x^* \text{ is an inverse of } x\}$ = $\{y^* : y^* \in S \text{ and } y^* \text{ is an inverse of } y\}.$

Then \mathfrak{D} is a congruence on S, and the factor semigroup S/\mathfrak{D} of S mod \mathfrak{D} is an inverse semigroup. Further the restriction \mathfrak{D}_{B} of \mathfrak{D}

138

³⁾ It is easy to see that $Q(L \otimes \Omega \otimes R; \Gamma)$ is same to the direct product $L \times \Omega \times R$ of L, Ω and R if Γ is a single element, that is, if L, Ω , and R are a left zero semigroup (i.e., left singular semigroup), a group and a right zero semigroup (i.e., right singular semigroup) respectively.

No. 2]

to B gives the structure decomposition of B, and the factor semigroup B/\mathfrak{D}_B (={ $B_{\gamma}: \gamma \in \Gamma$ }) of B mod \mathfrak{D}_B is the basic semilattice of S/\mathfrak{D}^{4} . Next, we also define relations \mathfrak{R} , \mathfrak{L} on B as follows:

(R) $e\Re f$ if and only if ef=f and fe=e.

(L) $e \mathfrak{L} f$ if and only if e f = e and f e = f.

Then $\mathfrak{R}, \mathfrak{L}$ are congruences on B satisfying $\mathfrak{R}, \mathfrak{L} \leq \mathfrak{D}_{B}$, and the factor semigroups B/\Re , B/\Re of B mod \Re , \Re are a left normal band and a right normal band, having $B/\Re \sim \sum \{B_{\gamma}/\Re_{\gamma} : B_{\gamma} \in B/\mathfrak{D}_{B}\}$ and $B/\Re \sim \sum \{B_{\gamma}/\Re_{\gamma} : B_{\gamma} \in B/\mathfrak{D}_{B}\}$ $\mathfrak{L}_{\gamma}: B_{\gamma} \in B/\mathfrak{D}_{B}$ as their structure decompositions respectively, where \Re_{γ} and \Re_{γ} are the restrictions of \Re and \Re to the γ -kernel B_{γ} of B. Since the basic semilattice of S/\mathfrak{D} is B/\mathfrak{D}_B and since each of the structure semilattices of B/\Re and B/\Re is B/\mathfrak{D}_B , we can consider the quasi-direct product $Q(B/\Re \otimes S/\mathfrak{D} \otimes B/\mathfrak{A}; B/\mathfrak{D}_B)$. Let \overline{x} denote the congruence class containing x mod \mathfrak{D} , and let $\tilde{e}, \tilde{\tilde{e}}$ denote the congruence classes containing $e \mod \Re$, \Im respectively. Now, define a mapping $\psi: S \longrightarrow Q(B/\Re \otimes S/\mathfrak{D} \otimes B/\mathfrak{L}; B/\mathfrak{D}_B)$ as follows: $\psi(x) = (\widetilde{xx^*}, \overline{x}, \widetilde{x^*x}),$ where x^* is an inverse of x. This mapping ψ is well-defined. It can be proved as follows: Let x^* be an inverse of x. Then \overline{x}^* is the inverse of \overline{x} in the inverse semigroup S/\mathfrak{D} , and accordingly $\overline{x}\overline{x}^*$, $\overline{x}^*\overline{x}$ are elements of $B/\mathfrak{D}_{\scriptscriptstyle B}$. Let $\overline{x}\overline{x}^*=B_{\scriptscriptstyle \xi}$ and $\overline{x}^*\overline{x}=B_{\scriptscriptstyle \eta}$. Since $\Re \leq \mathfrak{D}_{B}$ and $\Re \leq \mathfrak{D}_{B}$, it follows that $\widetilde{xx^{*}} \in B_{\varepsilon}/\Re_{\varepsilon}$ and $\widetilde{x^{*}x} \in B_{\eta}/\Re_{\eta}$. Therefore, $(\widetilde{xx^*}, \overline{x}, \widetilde{x^*x}) \in Q(B/\Re \otimes S/\mathfrak{D} \otimes B/\mathfrak{L}; B/\mathfrak{D}_B)$. Next, let x_1^*, x_2^* be inverses of x. Then $\widetilde{xx_i^*} = \widetilde{xx_i^*}$ and $\widetilde{x_i^*x} = \widetilde{x_i^*x}$. Hence $\psi(x)$ is uniquely determined for every x of S. Thus ψ is a mapping of S into $Q(B/\Re \otimes S/\mathfrak{D} \otimes B/\mathfrak{D}; B/\mathfrak{D}_{B})$. It is also easily proved that ψ is an isomorphism of S onto $Q(B/\Re \otimes S/\mathfrak{D} \otimes B/\mathfrak{L}; B/\mathfrak{D}_{R})$.

That is,

Lemma 5. Let S be a generalized inverse semigroup, and B the normal band consisting of all idempotents of S. Let $B \sim$ $\sum \{B_{\gamma} : \gamma \in \Gamma\}$ be the structure decomposition of B. Let $\mathfrak{D}, \mathfrak{R}, \text{ and } \mathfrak{L}$ be the congruences defined by (D), (R), and (L) respectively. Let \mathfrak{D}_{B} be the restriction of \mathfrak{D} to B, and for any γ of $\Gamma \mathfrak{R}_{\gamma}$ and \mathfrak{L}_{γ} the restrictions of \mathfrak{R} and \mathfrak{L} to the γ -kernel B_{γ} of B respectively. Then,

(1) S/\mathfrak{D} is an inverse semigroup having $B/\mathfrak{D}_B(=\{B_\gamma: \gamma \in \Gamma\})$ as its basic semilattice, and B/\mathfrak{R} and B/\mathfrak{L} are a left normal band and a right normal band, having $B/\mathfrak{R} \sim \sum \{B_\gamma/\mathfrak{R}_\gamma: B_\gamma \in B/\mathfrak{D}_B\}$ and

⁴⁾ Let M be a subsemigroup of a semigroup S. Let \mathfrak{P} be a relation on S. Define a new relation \mathfrak{P}_M on M as follows: $x\mathfrak{P}_M y$ if and only if $x\mathfrak{P} y$, $x, y \in M$. This relation \mathfrak{P}_M is said to be the restriction of \mathfrak{P} to M. It is easy to see that \mathfrak{P}_M is a congruence on M if \mathfrak{P} is a congruence on S.

[Vol. 42,

 $B/\mathfrak{L} \sim \sum \{B_{\gamma}/\mathfrak{L}_{\gamma} : B_{\gamma} \in B/\mathfrak{D}_{B}\}$ as their structure decompositions; and

(2) S is isomorphic to the quasi-direct product $Q(B/\Re \otimes S/\mathfrak{D} \otimes B/\mathfrak{L}; B/\mathfrak{D}_B)$.

M. YAMADA

Summarizing Lemmas 4 and 5, we obtain the following structure theorem for generalized inverse semigroups:

Theorem 2. A semigroup is a generalized inverse semigroup if and only if it is isomorphic to the quasi-direct product of a left normal band, an inverse semigroup and a right normal band.

References

- [1] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. Amer. Math. Soc., Providence, R. I. (1961).
- [2] D. McLean: Idempotent semigroups. Amer. Math. Monthly, 61, 110-113 (1954).
- [3] G. B. Preston: Inverse semigroups. J. London Math. Soc., 29, 396-403 (1954).
- [4] ----: Representations of inverse semigroups. J. London Math. Soc., 29, 411-419 (1954).
- [5] V. V. Vagner: Generalized groups. Doklady Akad. Nauk SSSR (N.S.), 84, 1119-1122 (1952).
- [6] M. Yamada and N. Kimura: Note on idempotent semigroups. II. Proc. Japan Acad., 34, 110-112 (1958).